A Transmuted Modified Power-Generated Family of Distributions with Practice on Submodels in Insurance and Reliability
Abstract
:1. Introduction
1.1. Context
1.2. Idea
- This is a new and simple family that combines the functionalities of two well-recognized families.
- By setting a baseline, we are able to make the shape of the corresponding probability density function (pdf) and hazard rate function (hrf) more flexible.
- In light of the above, statistical advances are possible: in comparison to the existing models, we can achieve better and more precise fits.
1.3. Structure of the Article
2. Presentation and Properties of the TMPo-G Family
2.1. Presentation
2.2. Asymptotics
2.3. Quantile Function
2.4. Series Representations
2.5. Moments
2.6. Estimation
3. The TMPoE Distribution
3.1. Presentation
3.2. Expansion of the TMPoE Distribution
3.3. Quantile Function
3.4. Moment Measures
3.5. Estimation
4. Some Actuarial Measures
4.1. Value at Risk
4.2. Expected Shortfall
4.3. Numerical Illustration of VaR and ES under the TMPoE Distribution
5. Simulation Analysis
6. Practice for the TMPoE Model
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
List of Abbreviations | |
Probability density function | |
cdf | Cumulative distribution function |
hrf | Hazard rate function |
MPo-G | Modified power-generated |
QT-G | Quadratic transmuted-generated |
T-G | Transmuted-generated |
TMPo-G | Transmuted modified power-generated |
TMPoE | Transmuted modified power exponential |
VaR | Value at risk |
ES | Expected shortfall |
MLE | Maximum likelihood estimate |
SE | Standard error |
MSE | Mean square error |
CP | Coverage probabilities |
AW | Average width |
TGE | Transmuted generalized exponential |
GEE | Gamma exponentiated exponential |
E | Exponential |
EE | Exponentiated exponential |
EW | Exponentiated Weibull |
OWE | Odd Weibull exponential |
KwE | Kumaraswamy exponential |
BE | Beta exponential |
AIC | Akaike information criterion |
CAIC | Consistent Akaike information criterion |
BIC | Bayesian information criterion |
HQIC | Hannan–Quinn information criterion |
K-S | Kolmogorov–Smirnov |
P-P | Probability–probability |
Q-Q | Quantile–quantile |
TTT | Total time on test |
List of Symbols | |
Baseline vector of parameters | |
, , | Main parameters used |
Baseline cumulative distribution function | |
Baseline probability density function | |
Probability density function | |
Survival function | |
Hazard rate function | |
Hazard rate function | |
M | Median |
X | Random variable |
rth moment | |
rth incomplete moment at t | |
Coefficient of moment skewness | |
Coefficient of moment kurtosis | |
Gamma function | |
Lower incomplete gamma function | |
Log-likelihood function | |
Value at risk | |
Expected shortfall | |
Anderson–Darling | |
Cramér–von Mises |
Appendix A
- pdf_PPL <- function(par,x){
- c=par[1]
- alpha=par[2]
- delta=par[3]
- G=1-exp(-c*x)
- g=c*exp(-c*x)
- F=1-(1-delta*(G*alpha^(G-1)))*(1-G*alpha^(G-1))
- f=g*alpha^(G-1)*(1+log(alpha)*G)*(1+delta-2*delta*G*alpha^(G-1))
- return(f)
- }
- ll.PPL <- function(par){
- -sum(log(pdf_PPL(par,x)))
- }
- quantile <- function(c,alpha,delta,u){
- t=lambertW0((1/2)*(alpha*log(alpha)+((alpha*log(alpha))/delta)
- -alpha*log(alpha)*sqrt(1+2*delta-4*u*delta+delta^2)))/log(alpha)
- q1=-1/c*log(1-t)
- return(q1)
- }
- library(numDeriv)
- c=0.5;alpha=0.3;delta=1
- n1=c(25,50,100,500)
- for (j in 1:length(n1)){
- n=n1[j]
- N=500
- mle_c<- c(rep(0,N))
- mle_alpha<-c(rep(0,N))
- mle_delta<-c(rep(0,N))
- LC_c<-c(rep(0,N))
- UC_c<-c(rep(0,N))
- LC_alpha<-c(rep(0,N))
- UC_alpha<-c(rep(0,N))
- LC_delta<-c(rep(0,N))
- UC_delta<-c(rep(0,N))
- temp=1
- count_c=0;count_alpha=0;count_delta=0
- HH1<-matrix(c(rep(2,9)),nrow=3,ncol=3)
- HH2<-matrix(c(rep(2,9)),nrow=3,ncol=3)
- for (i in 1:N)
- {
- #print(i)
- #flush.console()
- repeat{
- x<-c(rep(0,n))
- #Generate a random variable from uniform distribution
- u<-0
- u<-runif(n,min=0,max=1)
- for (k in 1:n){
- x[k]<-quantile(c=c,alpha=alpha,delta=delta,u[k])
- }
- #Maximum likelihood estimation
- mle.result<-nlminb(c(c=c,alpha=alpha,delta=delta),
- ll.PPL,lower=c(0,0,0),upper=c(Inf,Inf,Inf))
- temp=mle.result$convergence
- if(temp==0){
- temp_c<-mle.result$par[1]
- temp_alpha<-mle.result$par[2]
- temp_delta<-mle.result$par[3]
- HH1<-hessian(ll.PPL,
- c(temp_c,temp_alpha,temp_delta))
- if( sum(is.nan(HH1))==0 & (diag(HH1)[1]>0) &
- (diag(HH1)[2]>0) & (diag(HH1)[3]>0) ){
- HH2<-solve(HH1)
- #print(det(HH1))
- }
- else{
- temp=1}
- }
- if ((temp==0) & (diag(HH2)[1]>0) & (diag(HH2)[2]>0)
- & (diag(HH2)[3]>0) & (sum(is.nan(HH2))==0)){
- break
- }
- else{
- temp=1}
- }
- mle_c[i]<-mle.result$par[1]
- mle_alpha[i]<-mle.result$par[2]
- mle_delta[i]<-mle.result$par[3]
- HH<-hessian(ll.PPL,c(mle_c[i],mle_alpha[i],
- mle_delta[i]))
- H<-solve(HH)
- LC_c[i]<-mle_c[i]-qnorm(0.975)*sqrt(diag(H)[1])
- UC_c[i]<-mle_c[i]+qnorm(0.975)*sqrt(diag(H)[1])
- if( (LC_c[i]<=c) & (c<=UC_c[i])){
- count_c=count_c+1
- }
- LC_alpha[i]<-mle_alpha[i]-qnorm(0.975)*sqrt(diag(H)[2])
- UC_alpha[i]<-mle_alpha[i]+qnorm(0.975)*sqrt(diag(H)[2])
- if( (LC_alpha[i]<=alpha) & (alpha<=UC_alpha[i])){
- count_alpha=count_alpha+1
- }
- LC_delta[i]<-mle_delta[i]-qnorm(0.975)*sqrt(diag(H)[3])
- UC_delta[i]<-mle_delta[i]+qnorm(0.975)*sqrt(diag(H)[3])
- if( (LC_delta[i]<=delta) & (delta<=UC_delta[i])){
- count_delta=count_delta+1
- }
- }
- #Calculate Average Bias
- ABias_c<-sum(mle_c-c)/N
- ABias_alpha<-sum(mle_alpha-alpha)/N
- ABias_delta<-sum(mle_delta-delta)/N
- #print(cbind(ABias_c,ABias_alpha,ABias_delta))
- #Calculate MSE
- MSE_c<-sum((c-mle_c)^2)/N
- MSE_alpha<-sum((alpha-mle_alpha)^2)/N
- MSE_delta<-sum((delta-mle_delta)^2)/N
- #print(cbind(RMSE_c,RMSE_alpha,RMSE_delta))
- #Converge Probability
- CP_c<-count_c/N
- CP_alpha<-count_alpha/N
- CP_delta<-count_delta/N
- #print(cbind(CP_c,CP_alpha,CP_delta))
- ## ACI
- ALC_c <- sum(abs(LC_c))/N
- AUC_c <- sum(abs(UC_c))/N
- ALC_alpha <- sum(abs(LC_alpha))/N
- AUC_alpha <- sum(abs(UC_alpha))/N
- ALC_delta <- sum(abs(LC_delta))/N
- AUC_delta <- sum(abs(UC_delta))/N
- #Average Width
- AW_c<-sum(abs(UC_c-LC_c))/N
- AW_alpha<-sum(abs(UC_alpha-LC_alpha))/N
- AW_delta<-sum(abs(UC_delta-LC_delta))/N
- #print(cbind(AW_c,AW_alpha,AW_delta))
- out.ML = rbind(
- cbind(round(ABias_c,3), round(MSE_c,3),round(CP_c,3),round(ALC_c,3),
- round(AUC_c,3),round(AW_c,3)),
- cbind(round(ABias_alpha,3),round(MSE_alpha,3),round(CP_alpha,3),
- round(ALC_alpha,3),round(AUC_alpha,3),round(AW_alpha,3)),
- cbind(round(ABias_delta,3),round(MSE_delta,3),round(CP_delta,3),
- round(ALC_delta,3),round(AUC_delta,3),round(AW_delta,3))
- )
- colnames(out.ML)= c("Bais", "MSE", "CP", "L.Bound", "U.Bound","AW")
- cat("\n\n MLE for c=",c, "and alpha=",alpha, "fix n=",n1[j]," delta=",
- delta,"\n")
- print(out.ML)
- }
References
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Gupta, R.C.; Gupta, P.L.; Gupta, R.D. Modeling failure time data by Lehman alternatives. Commun.-Stat.-Theory Methods 1998, 27, 887–904. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [Google Scholar] [CrossRef]
- Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. -Stat.-Theory Methods 2002, 31, 497–512. [Google Scholar] [CrossRef]
- Gleaton, J.U.; Lynch, J.D. Extended generalized log-logistic families of lifetime distributions with an application. J. Probab. Stat. Sci. 2010, 8, 1–17. [Google Scholar]
- Cordeiro, G.M.; Ortega, E.M.; da Cunha, D.C. The exponentiated generalized class of distributions. J. Data Sci. 2013, 11, 1–27. [Google Scholar] [CrossRef]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull–G family of probability distributions. J. Data Sci. 2014, 12, 53–68. [Google Scholar] [CrossRef]
- Tahir, M.H.; Cordeiro, G.M.; Alizadeh, M.; Mansoor, M.; Zubair, M.; Hamedani, G.G. The odd generalized exponential family of distributions with applications. J. Stat. Distrib. Appl. 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.H.; Cordeiro, G.M.; Alzaatreh, A.; Mansoor, M.; Zubair, M. The logistic-X family of distributions and its applications. Commun. Stat. Methods 2016, 45, 7326–7349. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, S.; Sadr, B.B.; Alizadeh, M.; Nadarajah, S. Topp-Leone generated family of distributions: Properties and applications. Commun. -Stat.-Theory Methods 2017, 46, 2893–2909. [Google Scholar] [CrossRef]
- Bakouch, H.; Chesneau, C.; Enany, M. A weighted general family of distributions: Theory and practice. Comput. Math. Methods 2021, 3, e1135. [Google Scholar] [CrossRef]
- Jamal, F.; Reyad, H.; Chesneau, C.; Nasir, M.A.; Othman, S. The Marshall-Olkin odd Lindley-G family of distributions: Theory and applications. Punjab Univ. J. Math. 2020, 51, 111–125. [Google Scholar]
- Jamal, F.; Chesneau, C.; Bouali, D.L.; Ul Hassan, M. Beyond the Sin-G family: The transformed Sin-G family. PLoS ONE 2021, 16, e0250790. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Shen, L.; Xu, A. Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. Reliab. Eng. Syst. Saf. 2022, 218, 108136. [Google Scholar] [CrossRef]
- Shaw, W.T.; Buckley, I.R. The alchemy of probability distributions: Beyond gram-charlier cornish-fisher expansions, and skew-normal or kurtotic-normal distributions. Submitt. Feb 2007, 7, 64. [Google Scholar]
- Bourguignon, M.; Ghosh, I.; Cordeiro, G.M. General Results for the Transmuted Family of Distributions and New Models. J. Probab. Stat. 2016, 2016, 7208425. [Google Scholar] [CrossRef]
- Nofal, Z.M.; Afify, A.Z.; Yousof, H.M.; Cordeiro, G.M. The generalized transmuted-G family of distributions. Commun. -Stat.-Theory Methods 2017, 46, 4119–4136. [Google Scholar] [CrossRef]
- Merovci, F.; Alizadeh, M.; Yousof, H.M.; Hamedani, G.G. The exponentiated transmuted-G family of distributions: Theory and applications. Commun.-Stat.-Theory Methods 2017, 46, 10800–10822. [Google Scholar] [CrossRef]
- Mansour, M.M.; Abd Elrazik, E.M.; Afify, A.Z.; Ahsanullah, M.; Altun, E. The transmuted transmuted-G family: Properties and applications. J. Nonlinear Sci. Appl. 2019, 12, 217–229. [Google Scholar] [CrossRef]
- Afify, A.Z.; Cordeiro, G.M.; Yousof, H.M.; Alzaatreh, A.; Nofal, Z.M. The Kumaraswamy Transmuted-G Family of Distributions: Properties and Applications. J. Data Sci. 2016, 14, 245–270. [Google Scholar] [CrossRef]
- Alizadeh, M.; Rasekhi, M.; Yousof, H.M.; Hamedani, G. The Transmuted Weibull-G Family of Distributions. Hacet. J. Math. Stat. 2017, 47, 1671–1689. [Google Scholar] [CrossRef]
- Afify, A.Z.; Alizadeh, M.; Yousof, H.M.; Aryal, G.; Ahmad, M. The transmuted geometric-G family of distributions: Theory and applications. Pak. J. Stat. 2016, 32, 139–160. [Google Scholar]
- Yousof, H.M.; Alizadeh, M.; Jahanshahi, S.M.A.; Ghosh, T.G.R.I.; Hamedani, G.G. The transmuted Topp-Leone G family of distributions: Theory, characterizations and applications. J. Data Sci. 2017, 15, 723–740. [Google Scholar] [CrossRef]
- Hussein, M.; Cordeiro, M.G. A Modified Power Family of Distributions: Properties, Simulations and Applications. Mathematics 2022, 10, 1035. [Google Scholar] [CrossRef]
- Gilchrist, W.G. Statistical Modelling with Quantile Functions; Chapman & Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Altman, D.G.; Bland, J.M. Standard deviations and standard errors. BMJ 2005, 331, 903. [Google Scholar] [CrossRef] [Green Version]
- Casella, G.; Berger, R.L. Statistical Inference; Brooks/Cole Publishing Company: Bel Air, CA, USA, 1990. [Google Scholar]
- Zhuang, L.; Xu, A.; Wang, X.L. A prognostic driven predictive maintenance framework based on Bayesian deep learning. Reliab. Eng. Syst. Saf. 2023, 234, 109181. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, A.; Tang, Y.; Shen, L. Fast Bayesian Inference of Reparameterized Gamma Process With Random Effects. IEEE Trans. Reliab. 2023, 2023, 1–14. [Google Scholar] [CrossRef]
- Aryal, G.R.; Tsokos, C.P. Transmuted Weibull distribution: A generalization of the Weibull probability distribution. Eur. J. Pure Appl. Math. 2011, 4, 89–102. [Google Scholar]
- Artzner, P. Application of coherent risk measures to capital requirements in insurance. North Am. Actuar. J. 1999, 3, 11–25. [Google Scholar] [CrossRef]
- Artzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D. Coherent Measures of Risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Chan, S.; Nadarajah, S.; Afuecheta, E. An R Package for Value at Risk and Expected Shortfall. Commun. Stat. Simul. Comput. 2016, 45, 3416–3434. [Google Scholar] [CrossRef]
- Sigal, M.J.; Chalmers, R.P. Play it again: Teaching statistics with Monte Carlo simulation. J. Stat. Educ. 2016, 24, 136–156. [Google Scholar] [CrossRef]
- Khan, S.; Balogun, O.S.; Tahir, M.H.; Almutiry, W.; Alahmadi, A.A. An alternate generalized odd generalized exponential family with applications to premium data. Symmetry 2021, 13, 2064. [Google Scholar] [CrossRef]
- Khan, M.S.; King, R.; Hudson, I.L. Transmuted Weibull distribution: Properties and estimation. Commun.-Stat.-Theory Methods 2017, 46, 5394–5418. [Google Scholar] [CrossRef]
- Ristic, M.M.; Balakrishnan, N. The gamma-exponentiated exponential distribution. J. Stat. Comput. Simul. 2012, 82, 1191–1206. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Nadarajah, S.; Cordeiro, G.M.; Ortega, E.M. General results for the Kumaraswamy g distribution. J. Stat. Comput. Simul. 2012, 82, 951–979. [Google Scholar] [CrossRef]
- Jones, M.C. Families of distributions arising from distributions of order statistics. Test 2004, 13, 1–43. [Google Scholar] [CrossRef]
Measures | S-1 | S-2 | S-3 | S-4 |
---|---|---|---|---|
0.2254 | 0.3017 | 0.4108 | 0.7313 | |
0.3088 | 0.1553 | 0.3841 | 0.9611 | |
1.2482 | 0.1281 | 0.5793 | 1.8525 | |
6.3303 | 0.1581 | 1.2085 | 4.7827 | |
0.2579 | 0.0642 | 0.2153 | 0.4263 | |
1.0370 | 0.0424 | 0.2445 | 0.5261 | |
5.2913 | 0.0634 | 0.5600 | 1.5897 | |
4.0211 | 2.9154 | 2.4556 | 1.8907 | |
76.5684 | 12.3822 | 9.0809 | 5.7475 |
q | TMPoE | EEP | EE |
---|---|---|---|
ES | |||
0.50 | 14.1472 | 3.9010 | 4.3658 |
0.60 | 14.7885 | 4.3764 | 4.9788 |
0.65 | 15.4987 | 4.8922 | 5.6449 |
0.70 | 16.2968 | 5.4580 | 6.3736 |
0.75 | 17.2117 | 6.0877 | 7.1787 |
0.80 | 18.2917 | 6.8024 | 8.0803 |
0.85 | 19.6288 | 7.6371 | 9.1102 |
0.90 | 21.4495 | 8.6587 | 10.3254 |
VaR | |||
0.50 | 20.8744 | 8.9362 | 10.8462 |
0.60 | 22.8665 | 10.3070 | 12.6367 |
0.65 | 25.2533 | 11.8979 | 14.6862 |
0.70 | 28.2040 | 13.7881 | 17.0727 |
0.75 | 32.0171 | 16.1057 | 19.9178 |
0.80 | 37.2870 | 19.0764 | 23.4249 |
0.85 | 45.4590 | 23.1516 | 27.9765 |
0.90 | 61.7136 | 29.4353 | 34.4308 |
Scenario-I | |||||||
---|---|---|---|---|---|---|---|
Bias | MSE | CP | L.Bound | U.Bound | AW | ||
25 | 0.136 | 0.038 | 0.992 | 0.174 | 1.012 | 1.154 | |
0.029 | 0.430 | 0.978 | 0.550 | 2.1687 | 2.679 | ||
−0.496 | 0.280 | 1.000 | 0.815 | 1.800 | 2.593 | ||
50 | 0.136 | 0.036 | 0.980 | 0.138 | 0.921 | 0.970 | |
0.087 | 0.288 | 0.986 | 0.284 | 2.018 | 2.262 | ||
−0.431 | 0.230 | 0.990 | 0.603 | 1.647 | 2.157 | ||
100 | 0.142 | 0.032 | 0.970 | 0.137 | 0.835 | 0.786 | |
0.167 | 0.207 | 0.962 | 0.215 | 1.907 | 1.879 | ||
−0.370 | 0.187 | 0.978 | 0.482 | 1.487 | 1.715 | ||
150 | 0.140 | 0.030 | 0.966 | 0.148 | 0.809 | 0.737 | |
0.188 | 0.171 | 0.966 | 0.289 | 1.834 | 1.692 | ||
−0.318 | 0.145 | 0.976 | 0.447 | 1.467 | 1.568 | ||
200 | |||||||
500 | |||||||
Scenario-II | |||||||
Bias | MSE | CP | L.Bound | U.Bound | AW | ||
25 | 0.089 | 0.015 | 0.984 | 0.071 | 0.570 | 0.561 | |
0.724 | 8.497 | 0.918 | 2.103 | 7.150 | 9.253 | ||
−0.486 | 0.277 | 1.000 | 0.967 | 1.981 | 2.933 | ||
50 | 0.082 | 0.010 | 0.978 | 0.085 | 0.499 | 0.435 | |
0.612 | 3.873 | 0.960 | 0.540 | 5.361 | 5.898 | ||
−0.393 | 0.200 | 0.994 | 0.610 | 1.711 | 2.209 | ||
100 | 0.083 | 0.009 | 0.966 | 0.117 | 0.459 | 0.351 | |
0.612 | 1.192 | 0.992 | 0.486 | 4.467 | 4.112 | ||
−0.360 | 0.174 | 0.996 | 0.513 | 1.544 | 1.807 | ||
150 | 0.076 | 0.008 | 0.940 | 0.131 | 0.429 | 0.306 | |
0.516 | 0.758 | 0.994 | 0.740 | 3.955 | 3.279 | ||
−0.322 | 0.145 | 0.996 | 0.435 | 1.432 | 1.507 | ||
200 | |||||||
500 | |||||||
Scenario-III | |||||||
---|---|---|---|---|---|---|---|
Bias | MSE | CP | L.Bound | U.Bound | AW | ||
25 | 0.568 | 0.568 | 0.986 | 0.606 | 3.736 | 3.337 | |
2.630 | 103.598 | 0.920 | 7.822 | 19.683 | 27.505 | ||
−0.545 | 0.3547 | 1.000 | 1.199 | 2.099 | 3.290 | ||
50 | 0.530 | 0.409 | 0.972 | 0.788 | 3.310 | 2.560 | |
1.331 | 21.844 | 0.962 | 1.925 | 11.188 | 13.113 | ||
−0.465 | 0.282 | 0.996 | 0.756 | 1.718 | 2.367 | ||
100 | 0.515 | 0.371 | 0.950 | 0.997 | 3.083 | 2.136 | |
1.054 | 4.940 | 0.988 | 0.602 | 8.560 | 8.411 | ||
−0.397 | 0.219 | 1.000 | 0.584 | 1.537 | 1.869 | ||
150 | 0.514 | 0.358 | 0.908 | 1.117 | 2.913 | 1.797 | |
1.021 | 3.498 | 0.988 | 1.082 | 7.847 | 7.051 | ||
−0.393 | 0.224 | 0.996 | 0.541 | 1.413 | 1.613 | ||
200 | |||||||
500 | |||||||
Scenario-IV | |||||||
Bias | MSE | CP | L.Bound | U.Bound | AW | ||
25 | |||||||
50 | |||||||
100 | |||||||
150 | |||||||
200 | |||||||
500 | |||||||
Dist. | Parameter | Data 1 | Data 2 | ||
---|---|---|---|---|---|
Estimate | SE | Estimate | SE | ||
TMPoE | 0.027 | 0.007 | 0.714 | 0.143 | |
0.452 | 0.095 | 0.586 | 0.331 | ||
0.667 | 0.263 | 7.570 | 4.211 | ||
TGE | 0.0441 | 0.009 | 0.458 | 0.146 | |
0.772 | 0.169 | 0.842 | 0.341 | ||
0.938 | 0.117 | 1.701 | 0.309 | ||
GEE | 0.055 | 0.009 | 0.603 | 0.086 | |
1.501 | 0.736 | 4.507 | 4.697 | ||
0.557 | 0.276 | 0.362 | 0.395 | ||
EE | 0.062 | 0.009 | 0.702 | 0.092 | |
0.837 | 0.117 | 1.709 | 0.282 | ||
OWE | 0.003 | 0.0007 | 0.024 | 0.022 | |
12.232 | 3.349 | 41.056 | 24.289 | ||
0.778 | 0.056 | 1.274 | 0.111 | ||
KwE | 0.008 | 0.005 | 0.314 | 0.588 | |
0.818 | 0.074 | 1.549 | 0.358 | ||
6.1325 | 3.408 | 2.575 | 5.671 | ||
BE | 0.015 | 0.016 | 0.484 | 0.328 | |
0.818 | 0.106 | 1.679 | 0.317 | ||
3.870 | 4.197 | 1.511 | 4.551 | ||
TLE | 0.031 | 0.004 | 0.351 | 0.046 | |
0.837 | 0.117 | 1.709 | 0.282 | ||
E | 0.071 | 0.007 | 0.510 | 0.058 |
Dist. | AIC | CAIC | BIC | HQIC | K-S | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
Data 1 | |||||||||
TMPoE | 315.586 | 637.172 | 637.455 | 644.638 | 640.182 | 1.451 | 0.209 | 0.100 | 0.313 |
TGE | 318.906 | 643.812 | 644.094 | 651.278 | 646.821 | 1.801 | 0.262 | 0.117 | 0.155 |
GEE | 322.692 | 651.385 | 651.667 | 658.850 | 654.394 | 2.190 | 0.322 | 0.121 | 0.134 |
EE | 323.550 | 651.101 | 651.241 | 656.079 | 653.108 | 2.270 | 0.335 | 0.124 | 0.1139 |
OWE | 322.400 | 650.801 | 651.083 | 658.266 | 653.810 | 2.011 | 0.291 | 0.134 | 0.072 |
KwE | 321.659 | 649.319 | 649.601 | 656.785 | 652.328 | 2.030 | 0.295 | 0.118 | 0.151 |
BE | 323.121 | 652.243 | 652.526 | 659.709 | 655.253 | 2.226 | 0.328 | 0.113 | 0.448 |
TLE | 323.550 | 651.101 | 651.241 | 656.079 | 653.108 | 2.270 | 0.335 | 0.125 | 0.113 |
E | 324.379 | 650.758 | 650.804 | 653.246 | 651.761 | 2.232 | 0.329 | 0.161 | 0.016 |
Data 2 | |||||||||
TMPoE | 120.666 | 247.336 | 247.666 | 254.325 | 250.127 | 0.453 | 0.076 | 0.086 | 0.588 |
TGE | 121.933 | 249.866 | 250.199 | 256.858 | 252.661 | 0.617 | 0.103 | 0.086 | 0.519 |
GEE | 121.993 | 249.987 | 250.320 | 256.979 | 252.781 | 0.652 | 0.109 | 0.093 | 0.496 |
EE | 122.243 | 248.487 | 248.651 | 253.148 | 250.350 | 0.693 | 0.116 | 0.094 | 0.479 |
OWE | 122.841 | 251.682 | 252.016 | 258.675 | 254.477 | 0.817 | 0.139 | 0.114 | 0.253 |
KwE | 122.094 | 250.189 | 250.522 | 257.181 | 252.983 | 0.681 | 0.115 | 0.099 | 0.418 |
BE | 122.227 | 250.455 | 250.788 | 257.447 | 253.249 | 0.693 | 0.116 | 0.095 | 0.461 |
TLE | 122.243 | 248.487 | 248.651 | 253.148 | 250.350 | 0.693 | 0.116 | 0.094 | 0.480 |
E | 127.114 | 256.228 | 256.282 | 258.559 | 257.160 | 0.707 | 0.119 | 0.166 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, S.; Al-Essa, L.A.; Bakouch, H.S.; Chesneau, C. A Transmuted Modified Power-Generated Family of Distributions with Practice on Submodels in Insurance and Reliability. Symmetry 2023, 15, 1458. https://doi.org/10.3390/sym15071458
Naz S, Al-Essa LA, Bakouch HS, Chesneau C. A Transmuted Modified Power-Generated Family of Distributions with Practice on Submodels in Insurance and Reliability. Symmetry. 2023; 15(7):1458. https://doi.org/10.3390/sym15071458
Chicago/Turabian StyleNaz, Sidra, Laila A. Al-Essa, Hassan S. Bakouch, and Christophe Chesneau. 2023. "A Transmuted Modified Power-Generated Family of Distributions with Practice on Submodels in Insurance and Reliability" Symmetry 15, no. 7: 1458. https://doi.org/10.3390/sym15071458