Investigation of Exponential Distribution Utilizing Randomly Censored Data under Balanced Loss Functions and Its Application to Clinical Data
Abstract
:1. Introduction
2. Randomly Censored Exponential Distribution
3. Maximum Likelihood Estimators
4. Bayesian Inference
4.1. Symmetric Balanced Loss Functions
The BSE Loss Function
4.2. Asymmetric Balanced Loss Functions
4.2.1. The BLINEX Loss Function
4.2.2. The BGE Loss Function
4.3. Lindley’s Approximation
- (1)
- The case of the BSE loss function
- (2)
- The case of the BLINEX loss function
- (3)
- The case of the BGE loss function
5. Clinical Applications
6. Simulation Study
7. Conclusions
8. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EXPD | Exponential distribution |
BSE | Balanced squared error loss function |
BLINEX | Balanced linear exponential loss function |
BGE | Balanced general entropy loss function |
Probability density function | |
CDF | Cumulative distribution function |
MLEs | Maximum likelihood estimators |
ML | Maximum likelihood |
FIM | Fisher information matrix |
MSEs | Mean squared errors |
K-S | Kolmogorov–Smirnov |
References
- Kang, S.B.; Park, S.M. Estimation for the exponentiated exponential distribution based on multiply Type-II censored samples. Commun. Stat. Appl. Methods 2005, 12, 643–652. [Google Scholar] [CrossRef]
- Singh, U.; Kumar, A. Bayesian estimation of the exponential parameter under a multiply Type-II censoring scheme. Austrian J. Stat. 2007, 36, 227–238. [Google Scholar] [CrossRef]
- Ganguly, A.; Mitra, S.; Samanta, D.; Kundu, D. Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring. J. Stat. Plan. Inference 2012, 142, 613–625. [Google Scholar] [CrossRef]
- Childs, A.; Balakrishnan, N.; Chandrasekar, B. Exact distribution of the MLEs of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring. Statistics 2012, 46, 441–458. [Google Scholar] [CrossRef]
- Kang, S.B.; Cho, Y.S.; Han, J.T.; Kim, J. An estimation of the entropy for a double exponential distribution based on multiply Type-II censored samples. Entropy 2012, 14, 161–173. [Google Scholar] [CrossRef]
- Kang, S.B.; Seo, J.I.; Kim, Y.K. Estimation for two-parameter generalized exponential distribution based on records. Commun. Stat. Appl. Methods 2013, 20, 29–39. [Google Scholar] [CrossRef]
- Chan, P.S.; Ng, H.K.T.; Su, F. Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring. Metrika 2015, 78, 747–770. [Google Scholar] [CrossRef]
- Cho, Y.S.; Sun, H.K.; Lee, K.J. Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme. Stat. Methodol. 2015, 23, 18–34. [Google Scholar] [CrossRef]
- Ahmed, A.M. Bayesian Estimations of Exponential Distribution Based on Interval-Censored Data with a Cure Fraction. J. Math. 2021, 2021, 9822870. [Google Scholar] [CrossRef]
- Gilbert, J.P. Random Censorship. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 1962. [Google Scholar]
- Breslow, N.; Crowley, J. A large sample study of the life table and product limit estimates under random censorship. Ann. Stat. 1974, 2, 437–453. [Google Scholar] [CrossRef]
- Csorgo, S.; Horvath, L. On the Koziol-Green model for random censorship. Biometrika 1981, 68, 391–401. [Google Scholar] [CrossRef]
- Kim, J.H. Chi-Square goodness-of-fit tests for randomly censored data. Ann. Stat. 1993, 21, 1621–1639. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Al-Awadhi, S. Maximum likelihood estimation of Burr XII distribution parameters under random censoring. J. Appl. Stat. 2002, 29, 955–965. [Google Scholar] [CrossRef]
- Saleem, M.; Aslam, M. On Bayesian analysis of the Rayleighsurvival time assuming the random censor time. Pak. J. Stat. 2009, 25, 71–82. [Google Scholar]
- Danish, M.Y.; Aslam, M. Bayesian estimation for randomly censored generalized exponential distribution under asymmetric loss functions. J. Appl. Stat. 2013, 40, 1106–1119. [Google Scholar] [CrossRef]
- Danish, M.Y.; Aslam, M. Bayesian inference for the randomly censored Weibull distribution. J. Stat. Comput. Simul. 2014, 84, 215–230. [Google Scholar] [CrossRef]
- Krishna, H.; Vivekan; Kumar, K. Estimation in Maxwell distribution with randomly censored data. J. Stat. Comput. Simul. 2015, 85, 3560–3578. [Google Scholar] [CrossRef]
- Garg, R.; Dube, M.; Kumar, K.; Krishna, H. On randomly censored generalized inverted exponential distribution. Am. J. Math. Manag. Sci. 2016, 35, 361–379. [Google Scholar] [CrossRef]
- Krishna, H.; Goel, N. Maximum likelihood and Bayes estimation in randomly censored geometric distribution. J. Probab. Stat. 2017, 2017, 4860167. [Google Scholar] [CrossRef]
- Krishna, H.; Goel, N. Classical and Bayesian inference in two parameter exponential distribution with randomly censored data. Comput. Stat. 2018, 33, 249–275. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, I. Estimation in inverse Weibull distribution based on randomly censored data. Statistica 2019, 79, 47–74. [Google Scholar]
- Garg, R.; Dube, M.; Krishna, H. Estimation of parameters and reliability characteristics in Lindley distribution using randomly censored data. Stat. Optim. Inf. Comput. 2020, 8, 80–97. [Google Scholar] [CrossRef]
- Ajmal, M.; Danish, M.Y.; Arshad, I.A. Objective Bayesian analysis for Weibull distribution with application to random censorship model. J. Stat. Comput. Simul. 2021, 92, 43–59. [Google Scholar] [CrossRef]
- Goel, N.; Krishna, H. Different methods of estimation in two parameter Geometric distribution with randomly censored data. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 1652–1665. [Google Scholar] [CrossRef]
- Jozani, M.J.; March, É.; Parsian, A. Bayes and robust Bayesian estimation under a general class of balanced loss functions. Stat. Pap. 2012, 53, 51–60. [Google Scholar] [CrossRef]
- Zellner, A. Bayesian estimation and prediction using asymmetric loss functions. J. Am. Assoc. Nurse Pract. 1986, 81, 446–545. [Google Scholar] [CrossRef]
- Lindley, D.V. Approximate Bayesian method. Trab. Estadística Investig. Oper. 1980, 31, 223–237. [Google Scholar] [CrossRef]
Parameter | MLE | BSEL | BLINEX | BGE | |||||
---|---|---|---|---|---|---|---|---|---|
a = −6 | a = 0.2 | a = 6 | a = −6 | a = 0.2 | a = 6 | ||||
0.01797 | 0.0 | 0.01908 | 0.01914 | 0.01908 | 0.01902 | 0.02072 | 0.01838 | 0.01600 | |
0.3 | 0.01875 | 0.01879 | 0.01875 | 0.01871 | 0.02008 | 0.01826 | 0.01644 | ||
0.7 | 0.01841 | 0.01844 | 0.01841 | 0.01839 | 0.01931 | 0.01813 | 0.01699 | ||
0.9 | 0.01808 | 0.01809 | 0.01808 | 0.01807 | 0.01835 | 0.01801 | 0.01768 | ||
1.99998 | 0.0 | 2.01858 | 2.35617 | 2.35617 | 1.64824 | 2.34372 | 1.89903 | 1.65700 | |
0.3 | 2.01300 | 2.30495 | 1.98439 | 1.69925 | 2.26555 | 1.92866 | 1.72085 | ||
0.7 | 2.00742 | 2.23061 | 1.99107 | 1.77312 | 2.17097 | 1.95885 | 1.80725 | ||
0.9 | 2.00184 | 2.09301 | 1.99775 | 1.90909 | 2.04977 | 1.98960 | 1.93766 |
n | MLE | ϖ | BSEL | BLINEX | BGE | ||||
---|---|---|---|---|---|---|---|---|---|
a = −6 | a = 0.2 | a = 6 | a = −6 | a = 0.2 | a = 6 | ||||
10 | 1.1276 | 0.0 | 0.78831 | 1.37152 | 0.77303 | 0.78073 | 1.33457 | 0.74674 | 0.80524 |
0.56951 | 0.5303 | 0.07065 | 0.55025 | 0.53323 | 0.07259 | 0.54242 | 0.49591 | ||
0.3 | 0.8901 | 1.32864 | 0.87619 | 0.83085 | 1.28832 | 0.83994 | 0.84649 | ||
0.39157 | 0.08125 | 0.40751 | 0.46418 | 0.08667 | 0.45142 | 0.4418 | |||
0.7 | 0.99188 | 1.27035 | 0.98202 | 0.90309 | 1.23186 | 0.94944 | 0.90947 | ||
0.27898 | 0.10057 | 0.28817 | 0.37389 | 0.10976 | 0.32173 | 0.36599 | |||
0.9 | 1.09367 | 1.17763 | 1.09071 | 1.03576 | 1.15834 | 1.07908 | 1.0355 | ||
0.19252 | 0.14213 | 0.19455 | 0.23794 | 0.14958 | 0.20352 | 0.23955 | |||
20 | 1.14933 | 0.0 | 0.88925 | 1.32387 | 0.87887 | 0.85798 | 1.26691 | 0.85457 | 0.87257 |
0.52439 | 0.39053 | 0.06472 | 0.40235 | 0.42363 | 0.07927 | 0.42992 | 0.40382 | ||
0.3 | 0.96728 | 1.28837 | 0.95817 | 0.90484 | 1.2373 | 0.93102 | 0.9136 | ||
0.29874 | 0.0766 | 0.30796 | 0.36604 | 0.09264 | 0.33687 | 0.35504 | |||
0.7 | 1.0453 | 1.24283 | 1.03901 | 0.97054 | 1.20357 | 1.01702 | 0.97381 | ||
0.2220 | 0.09497 | 0.22736 | 0.29301 | 0.11008 | 0.24753 | 0.28971 | |||
0.9 | 1.12333 | 1.17862 | 1.12147 | 1.08248 | 1.16416 | 1.11416 | 1.08256 | ||
0.16031 | 0.12657 | 0.16155 | 0.19018 | 0.13346 | 0.16685 | 0.19093 | |||
30 | 1.14299 | 0.0 | 0.92128 | 1.27407 | 0.91356 | 0.88668 | 1.2138 | 0.89356 | 0.89727 |
0.50454 | 0.3511 | 0.07994 | 0.35936 | 0.38677 | 0.10281 | 0.38086 | 0.37306 | ||
0.3 | 0.98779 | 1.24489 | 0.98104 | 0.93073 | 1.19498 | 0.95972 | 0.93674 | ||
0.27647 | 0.09212 | 0.2830 | 0.33506 | 0.1130 | 0.30463 | 0.32795 | |||
0.7 | 1.05431 | 1.20911 | 1.04966 | 0.99115 | 1.17431 | 1.03287 | 0.99311 | ||
0.21294 | 0.10899 | 0.21682 | 0.27076 | 0.12516 | 0.23176 | 0.26908 | |||
0.9 | 1.12082 | 1.16247 | 1.11946 | 1.08905 | 1.1513 | 1.11399 | 1.08899 | ||
0.1605 | 0.13405 | 0.16143 | 0.18362 | 0.13987 | 0.16541 | 0.18432 | |||
40 | 1.15909 | 0.0 | 0.95866 | 1.26744 | 0.95218 | 0.92223 | 1.20418 | 0.93452 | 0.93026 |
0.49236 | 0.30829 | 0.07902 | 0.31478 | 0.34393 | 0.10514 | 0.33252 | 0.33399 | ||
0.3 | 1.01879 | 1.24211 | 1.01313 | 0.96456 | 1.19205 | 0.9949 | 0.96905 | ||
0.24469 | 0.08979 | 0.24985 | 0.29711 | 0.11178 | 0.26721 | 0.29208 | |||
0.7 | 1.07892 | 1.21189 | 1.07503 | 1.02181 | 1.17881 | 1.06095 | 1.02335 | ||
0.19036 | 0.10402 | 0.19344 | 0.23975 | 0.11961 | 0.20528 | 0.23857 | |||
0.9 | 1.13905 | 1.17417 | 1.1379 | 1.11173 | 1.16427 | 1.13338 | 1.1119 | ||
0.14531 | 0.12383 | 0.14606 | 0.16423 | 0.12889 | 0.1492 | 0.16464 | |||
50 | 1.04347 | 0.0 | 0.83702 | 1.10906 | 0.83293 | 0.8203 | 1.06071 | 0.82227 | 0.83214 |
0.4787 | 0.45382 | 0.16908 | 0.45869 | 0.46948 | 0.20483 | 0.47044 | 0.45279 | ||
0.3 | 0.89895 | 1.0926 | 0.89494 | 0.86133 | 1.05686 | 0.881 | 0.86736 | ||
0.37193 | 0.18068 | 0.37655 | 0.41543 | 0.20724 | 0.39276 | 0.40743 | |||
0.7 | 0.96089 | 1.07378 | 0.95792 | 0.91626 | 1.05186 | 0.94587 | 0.91696 | ||
0.29977 | 0.19465 | 0.30288 | 0.34849 | 0.21118 | 0.31589 | 0.34776 | |||
0.9 | 1.02283 | 1.05175 | 1.02191 | 1.00057 | 1.04576 | 1.01777 | 0.99894 | ||
0.23736 | 0.21195 | 0.23819 | 0.25829 | 0.21658 | 0.24209 | 0.26021 | |||
60 | 1.15653 | 0.0 | 0.98525 | 1.22918 | 0.98042 | 0.94941 | 1.16945 | 0.96626 | 0.95536 |
0.44641 | 0.27552 | 0.0861 | 0.28017 | 0.30885 | 0.11901 | 0.29364 | 0.3020 | ||
0.3 | 1.03663 | 1.2109 | 1.03243 | 0.9887 | 1.16662 | 1.01825 | 0.99192 | ||
0.22278 | 0.09526 | 0.22654 | 0.26719 | 0.11999 | 0.23952 | 0.26383 | |||
0.7 | 1.08802 | 1.19004 | 1.08513 | 1.04063 | 1.16286 | 1.0744 | 1.04166 | ||
0.1769 | 0.10652 | 0.1792 | 0.21702 | 0.12208 | 0.18807 | 0.21625 | |||
0.9 | 1.1394 | 1.16567 | 1.13856 | 1.11833 | 1.15825 | 1.13516 | 1.11837 | ||
0.13789 | 0.12076 | 0.13846 | 0.15283 | 0.12517 | 0.14086 | 0.15302 | |||
70 | 1.16338 | 0.0 | 1.01023 | 1.22857 | 1.0056 | 0.96925 | 1.17302 | 0.99122 | 0.97413 |
0.41015 | 0.24821 | 0.08331 | 0.25254 | 0.28637 | 0.11438 | 0.266 | 0.28105 | ||
0.3 | 1.05617 | 1.2118 | 1.05228 | 1.00713 | 1.17096 | 1.03878 | 1.00976 | ||
0.20344 | 0.09199 | 0.20682 | 0.24764 | 0.11515 | 0.21877 | 0.24507 | |||
0.7 | 1.10212 | 1.19294 | 1.09951 | 1.05663 | 1.16815 | 1.0897 | 1.05752 | ||
0.16411 | 0.10241 | 0.16614 | 0.2015 | 0.11679 | 0.17399 | 0.20089 | |||
0.9 | 1.14806 | 1.17134 | 1.14731 | 1.12895 | 1.16468 | 1.14429 | 1.12904 | ||
0.13023 | 0.1152 | 0.13073 | 0.14353 | 0.11919 | 0.13282 | 0.14363 | |||
80 | 1.15634 | 0.0 | 1.02797 | 1.21426 | 1.02367 | 0.98119 | 1.16645 | 1.00934 | 0.98479 |
0.38418 | 0.22931 | 0.08987 | 0.23322 | 0.27308 | 0.11756 | 0.24643 | 0.26927 | ||
0.3 | 1.06648 | 1.19913 | 1.06299 | 1.01673 | 1.16424 | 1.0504 | 1.01851 | ||
0.19313 | 0.09816 | 0.19609 | 0.23753 | 0.11857 | 0.20704 | 0.23586 | |||
0.7 | 1.10499 | 1.18229 | 1.10272 | 1.06236 | 1.16127 | 1.09398 | 1.06281 | ||
0.16093 | 0.10795 | 0.16268 | 0.19575 | 0.1205 | 0.16962 | 0.19551 | |||
0.9 | 1.14351 | 1.16327 | 1.14287 | 1.12682 | 1.15767 | 1.14027 | 1.12683 | ||
0.1327 | 0.11971 | 0.13314 | 0.14442 | 0.12315 | 0.13495 | 0.14456 | |||
90 | 1.14176 | 0.0 | 1.02324 | 1.18964 | 1.01935 | 0.97738 | 1.14726 | 1.00595 | 0.98066 |
0.35236 | 0.23299 | 0.10184 | 0.23658 | 0.27626 | 0.12926 | 0.24907 | 0.27275 | ||
0.3 | 1.05879 | 1.17691 | 1.05567 | 1.01154 | 1.14639 | 1.04408 | 1.01301 | ||
0.1989 | 0.10944 | 0.20161 | 0.24166 | 0.12924 | 0.21188 | 0.24024 | |||
0.7 | 1.09435 | 1.16291 | 1.09233 | 1.05493 | 1.14479 | 1.08437 | 1.05509 | ||
0.16815 | 0.11824 | 0.16977 | 0.20118 | 0.13013 | 0.17627 | 0.20114 | |||
0.9 | 1.12991 | 1.14736 | 1.12935 | 1.11497 | 1.1426 | 1.127 | 1.11479 | ||
0.14075 | 0.12853 | 0.14116 | 0.15177 | 0.1317 | 0.14287 | 0.15199 | |||
100 | 1.04110 | 0.0 | 0.89263 | 1.05957 | 0.88974 | 0.86698 | 1.0236 | 0.8802 | 0.87312 |
0.34724 | 0.32031 | 0.20518 | 0.33353 | 0.3470 | 0.2374 | 0.30389 | 0.30899 | ||
0.3 | 0.93717 | 1.05527 | 0.93456 | 0.90245 | 1.03077 | 0.92446 | 0.90485 | ||
0.32558 | 0.20728 | 0.28841 | 0.30342 | 0.22849 | 0.32946 | 0.31036 | |||
0.7 | 0.98171 | 1.0499 | 0.97987 | 0.94796 | 1.03599 | 0.97201 | 0.94732 | ||
0.27583 | 0.21072 | 0.27769 | 0.31096 | 0.22254 | 0.28585 | 0.31175 | |||
0.9 | 1.02625 | 1.04348 | 1.0257 | 1.01201 | 1.03998 | 1.02317 | 1.01074 | ||
0.23105 | 0.21539 | 0.23156 | 0.24446 | 0.21835 | 0.23395 | 0.24584 |
n | MLE | ϖ | BSEL | BLINEX | BGE | ||||
---|---|---|---|---|---|---|---|---|---|
a = −6 | a = 0.2 | a = 6 | a = −6 | a = 0.2 | a = 6 | ||||
10 | 1.45133 | 0.0 | 2.01527 | 1.92692 | 1.92692 | 1.04771 | 2.08437 | 1.71507 | 1.05876 |
0.31143 | 0.28443 | 0.15966 | 0.2576 | 0.29469 | 0.2627 | 0.22204 | 0.27467 | ||
0.3 | 1.84609 | 1.87225 | 1.80146 | 1.09966 | 1.98038 | 1.62729 | 1.11165 | ||
0.23733 | 0.15836 | 0.19794 | 0.21012 | 0.21282 | 0.22469 | 0.29323 | |||
0.7 | 1.67691 | 1.79016 | 1.64744 | 1.17611 | 1.83849 | 1.54736 | 1.19143 | ||
0.20326 | 0.16631 | 0.20743 | 0.5967 | 0.18125 | 0.25121 | 0.5815 | |||
0.9 | 1.50773 | 1.61857 | 1.49943 | 1.32658 | 1.60014 | 1.4743 | 1.34571 | ||
0.27222 | 0.21866 | 0.27654 | 0.4146 | 0.22329 | 0.29432 | 0.40359 | |||
20 | 1.53751 | 0.0 | 1.99922 | 1.97301 | 1.97301 | 1.17838 | 2.09339 | 1.79772 | 1.19854 |
0.18733 | 0.14528 | 0.08094 | 0.13354 | 0.16117 | 0.14368 | 0.11749 | 0.13286 | ||
0.3 | 1.8607 | 1.91921 | 1.82822 | 1.2291 | 1.99484 | 1.71221 | 1.25236 | ||
0.10217 | 0.07563 | 0.10002 | 0.19073 | 0.10514 | 0.1167 | 0.16219 | |||
0.7 | 1.72219 | 1.83911 | 1.70097 | 1.30262 | 1.86316 | 1.6334 | 1.32971 | ||
0.10682 | 0.07774 | 0.11124 | 0.19836 | 0.08453 | 0.13696 | 0.17099 | |||
0.9 | 1.58368 | 1.67724 | 1.57774 | 1.43982 | 1.65417 | 1.56057 | 1.46243 | ||
0.15924 | 0.11722 | 0.16224 | 01584 | 0.1248 | 0.15272 | 0.14322 | |||
30 | 1.53687 | 0.0 | 1.94685 | 1.93865 | 1.93865 | 1.21814 | 2.03502 | 1.79429 | 1.24396 |
0.18289 | 0.12683 | 0.07319 | 0.12136 | 0.10104 | 0.11608 | 0.11595 | 0.16869 | ||
0.3 | 1.82385 | 1.88614 | 1.79869 | 1.26657 | 1.94306 | 1.70979 | 1.29509 | ||
0.09874 | 0.0712 | 0.0991 | 0.13774 | 0.09009 | 0.11471 | 0.10594 | |||
0.7 | 1.70086 | 1.8088 | 1.68428 | 1.33552 | 1.82181 | 1.63183 | 1.36606 | ||
0.10915 | 0.07748 | 0.11339 | 0.15643 | 0.08208 | 0.13408 | 0.32777 | |||
0.9 | 1.57787 | 1.65751 | 1.57319 | 1.45795 | 1.63544 | 1.55971 | 1.47906 | ||
0.15804 | 0.12041 | 0.16048 | 0.13877 | 0.12856 | 0.1687 | 0.12499 | |||
40 | 1.57821 | 0.0 | 1.95327 | 1.96138 | 1.96138 | 1.28026 | 2.04333 | 1.82672 | 1.31303 |
0.17735 | 0.09491 | 0.04912 | 0.0916 | 0.11101 | 0.0850 | 0.08688 | 0.17277 | ||
0.3 | 1.84075 | 1.90951 | 1.81907 | 1.32763 | 1.95458 | 1.74535 | 1.36269 | ||
0.06927 | 0.04525 | 0.06999 | 0.15445 | 0.06086 | 0.08104 | 0.11768 | |||
0.7 | 1.72823 | 1.83361 | 1.71393 | 1.3943 | 1.83894 | 1.6701 | 1.42962 | ||
0.07652 | 0.0487 | 0.08004 | 0.15286 | 0.05326 | 0.09544 | 0.15139 | |||
0.9 | 1.61571 | 1.68819 | 1.61168 | 1.50892 | 1.66596 | 1.60034 | 1.53021 | ||
0.11666 | 0.08481 | 0.11863 | 0.18262 | 0.09295 | 0.1249 | 0.16913 | |||
50 | 1.79817 | 0.0 | 2.29519 | 2.22199 | 2.22199 | 1.46437 | 2.34594 | 2.17244 | 1.51533 |
0.14212 | 0.13177 | 0.12668 | 0.12694 | 0.1148 | 0.12778 | 0.10083 | 0.13432 | ||
0.3 | 2.14608 | 2.16851 | 2.12175 | 1.51401 | 2.2426 | 2.04736 | 1.5702 | ||
0.14309 | 0.11507 | 0.13067 | 0.12386 | 0.12846 | 0.09767 | 0.11589 | |||
0.7 | 1.99698 | 2.08916 | 1.97964 | 1.58521 | 2.10738 | 1.93389 | 1.64302 | ||
0.06165 | 0.07818 | 0.05689 | 0.12414 | 0.09407 | 0.04861 | 0.09435 | |||
0.9 | 1.84788 | 1.93059 | 1.84273 | 1.7137 | 1.90322 | 1.83057 | 1.74923 | ||
0.03746 | 0.03945 | 0.03761 | 0.06213 | 0.03718 | 0.0387 | 0.05323 | |||
60 | 1.59147 | 0.0 | 1.92307 | 1.94338 | 1.94338 | 1.33141 | 2.00559 | 1.82799 | 1.37234 |
0.12707 | 0.06772 | 0.03181 | 0.06718 | 0.11201 | 0.05496 | 0.06738 | 0.19819 | ||
0.3 | 1.82359 | 1.89301 | 1.80678 | 1.37603 | 1.9233 | 1.75079 | 1.41737 | ||
0.05188 | 0.02975 | 0.05359 | 0.11306 | 0.03933 | 0.06329 | 0.11292 | |||
0.7 | 1.72411 | 1.82022 | 1.71294 | 1.43738 | 1.81776 | 1.67919 | 1.47546 | ||
0.06231 | 0.03526 | 0.0655 | 0.03254 | 0.03927 | 0.07747 | 0.04563 | |||
0.9 | 1.62463 | 1.68566 | 1.62147 | 1.53694 | 1.66517 | 1.61263 | 1.55615 | ||
0.0990 | 0.07145 | 0.10058 | 0.11166 | 0.07964 | 0.10535 | 0.11954 | |||
70 | 1.60751 | 0.0 | 1.90443 | 1.94432 | 1.94432 | 1.3613 | 1.99575 | 1.81737 | 1.40473 |
0.11337 | 0.05385 | 0.0262 | 0.05397 | 0.10624 | 0.04461 | 0.05681 | 0.10219 | ||
0.3 | 1.81536 | 1.89469 | 1.79971 | 1.40479 | 1.91664 | 1.74958 | 1.44788 | ||
0.04434 | 0.0241 | 0.04639 | 0.06102 | 0.0316 | 0.05612 | 0.02135 | |||
0.7 | 1.72628 | 1.82344 | 1.71611 | 1.46402 | 1.81618 | 1.68611 | 1.50254 | ||
0.05572 | 0.02926 | 0.05873 | 0.00575 | 0.03325 | 0.06935 | 0.07506 | |||
0.9 | 1.6372 | 1.69423 | 1.63436 | 1.55793 | 1.67404 | 1.62655 | 1.57622 | ||
0.08798 | 0.06294 | 0.08935 | 0.0335 | 0.07091 | 0.09339 | 0.02236 | |||
80 | 1.59969 | 0.0 | 1.84859 | 1.91237 | 1.91237 | 1.37375 | 1.94808 | 1.77204 | 1.41611 |
0.10003 | 0.05081 | 0.02356 | 0.05271 | 0.09275 | 0.03571 | 0.06148 | 0.05105 | ||
0.3 | 1.77392 | 1.86412 | 1.7601 | 1.41535 | 1.87484 | 1.71682 | 1.4565 | ||
0.0501 | 0.02455 | 0.05304 | 0.05047 | 0.03027 | 0.06479 | 0.01361 | |||
0.7 | 1.69925 | 1.7957 | 1.69046 | 1.47114 | 1.7831 | 1.66472 | 1.50673 | ||
0.06464 | 0.03352 | 0.06771 | 0.09944 | 0.03868 | 0.0781 | 0.07168 | |||
0.9 | 1.62458 | 1.67558 | 1.62216 | 1.55663 | 1.65678 | 1.6155 | 1.57251 | ||
0.09442 | 0.07043 | 0.09565 | 0.03425 | 0.07851 | 0.09925 | 0.02458 | |||
90 | 1.5824 | 0.0 | 1.8167 | 1.88275 | 1.88275 | 1.37094 | 1.91243 | 1.74682 | 1.41318 |
0.09154 | 0.04581 | 0.01909 | 0.04869 | 0.0339 | 0.02674 | 0.0603 | 0.05168 | ||
0.3 | 1.74641 | 1.8353 | 1.7339 | 1.4111 | 1.84219 | 1.69427 | 1.45127 | ||
0.05102 | 0.02288 | 0.05454 | 0.05273 | 0.02691 | 0.06763 | 0.01592 | |||
0.7 | 1.67612 | 1.76844 | 1.66818 | 1.46431 | 1.75469 | 1.64458 | 1.49803 | ||
0.06967 | 0.0355 | 0.07293 | 0.00333 | 0.04105 | 0.08367 | 0.07606 | |||
0.9 | 1.60583 | 1.65303 | 1.60365 | 1.54378 | 1.63551 | 1.59753 | 1.55806 | ||
0.00176 | 0.07721 | 0.00297 | 0.04077 | 0.08568 | 0.00655 | 0.03143 | |||
100 | 1.8543 | 0.0 | 2.23049 | 2.22135 | 2.22135 | 1.58621 | 2.29787 | 2.15229 | 1.66284 |
0.08656 | 0.07366 | 0.02266 | 0.06452 | 0.01176 | 0.01740 | 0.03187 | 0.0706 | ||
0.3 | 2.11763 | 2.1701 | 2.10084 | 1.63163 | 2.20717 | 2.05483 | 1.70643 | ||
0.08295 | 0.07238 | 0.08089 | 0.08501 | 0.02322 | 0.06305 | 0.05178 | |||
0.7 | 2.00478 | 2.09554 | 1.99317 | 1.69445 | 2.09215 | 1.96461 | 1.75959 | ||
0.0353 | 0.05732 | 0.03248 | 0.05503 | 0.06016 | 0.02692 | 0.03401 | |||
0.9 | 1.89192 | 1.9553 | 1.88854 | 1.79741 | 1.9299 | 1.88088 | 1.82716 | ||
0.01573 | 0.02002 | 0.01568 | 0.02386 | 0.01732 | 0.01578 | 0.0197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasaballah, M.M.; Balogun, O.S.; Bakr, M.E. Investigation of Exponential Distribution Utilizing Randomly Censored Data under Balanced Loss Functions and Its Application to Clinical Data. Symmetry 2023, 15, 1854. https://doi.org/10.3390/sym15101854
Hasaballah MM, Balogun OS, Bakr ME. Investigation of Exponential Distribution Utilizing Randomly Censored Data under Balanced Loss Functions and Its Application to Clinical Data. Symmetry. 2023; 15(10):1854. https://doi.org/10.3390/sym15101854
Chicago/Turabian StyleHasaballah, Mustafa M., Oluwafemi Samson Balogun, and Mahmoud E. Bakr. 2023. "Investigation of Exponential Distribution Utilizing Randomly Censored Data under Balanced Loss Functions and Its Application to Clinical Data" Symmetry 15, no. 10: 1854. https://doi.org/10.3390/sym15101854