A Classification of Motzkin Numbers Modulo 8
Keywords:
Motzkin numbers, Congruence classes
Abstract
The well-known Motzkin numbers were conjectured by Deutsch and Sagan to be nonzero when modulo $8$. The conjecture was first proved by Sen-Peng Eu, Shu-chung Liu and Yeong-Nan Yeh by using the factorial representation of the Catalan numbers. We present a short proof by finding a recursive formula for Motzkin numbers modulo $8$. Moreover, such a recursion leads to a full classification of Motzkin numbers modulo $8$.
An addendum was added on April 3 2018.