Anatomical mining method of cervical nerve root syndrome under visual sensing technology

Authors

DOI:

https://doi.org/10.4108/eetpht.v8i3.657

Keywords:

Visual sensing technology, Cervical nerve root, Syndrome, Anatomical images, Mining method, K-means clustering

Abstract

INTRODUCTION:  The gray resolution of anatomical image of cervical nerve root syndrome is low, that can not be mined accurately.

OBJECTIVES: Aiming at the defect of low gray resolution of anatomical images, an image mining method using visual perception technology was studied.

METHODS: According to the visual perception technology, the internal parameter matrix and external parameter matrix of binocular visual camera were determined by coordinate transformation, and the anatomical images of cervical nerve root syndrome were collected. The collected images are smoothed and enhanced by nonlinear smoothing algorithm and multi-scale nonlinear contrast enhancement method. The directional binary simple descriptor method is selected to extract the features of the enhanced image; Using K-means clustering algorithm, the anatomical image mining of cervical nerve root syndrome is completed by obtaining the initial clustering center and image mining.

RESULTS: Experimental results show that the information entropy of the images mined by the proposed method is higher than 5, the average gradient is greater than 7, the edge information retention is greater than 0.7, the peak signal-to-noise ratio is higher than 30 dB, and the similarity of the same category of images is greater than 0.9.

CONCLUSIONS: This method can effectively mine the anatomical images of cervical nerve root syndrome and provide an important basis for the diagnosis and treatment of cervical nerve root syndrome.

Downloads

Download data is not yet available.

References

Fan, W. , Wang, R. & Bouguila, N. (2021). Simultaneous positive sequential vectors modeling and unsupervised feature selection via continuous hidden markov models. Pattern Recognition, 119(2), 108073. DOI: https://doi.org/10.1016/j.patcog.2021.108073

Antol, M. , Ha, J. , Slanináková, T. & Dohnal, V. (2021). Learned metric index — proposition of learned indexing for unstructured data. Information Systems, 100(8), 101774. DOI: https://doi.org/10.1016/j.is.2021.101774

Liu, S. , Xu, X. , Zhang, Y. , Khan, M. & Fu, W. (2022) A Reliable Sample Selection Strategy for Weakly-supervised Visual Tracking, IEEE Transactions on Reliability, online first, 10.1109/TR.2022.3162346

Zhang, L. (2020). Feature mining simulation of video image information in multimedia learning environment based on bow algorithm. The Journal of Supercomputing, 76(1), 113-121. DOI: https://doi.org/10.1007/s11227-019-02890-x

Haq, N. F. , Moradi, M. & Wang, Z. J. (2020). A deep community based approach for large scale content based x-ray image retrieval. Medical Image Analysis, 68(2), 101847.

Chen, S. & Meng, G. (2021). Simulation of Image Breakage Data Interaction Method in Visual Sensor Network. Computer Simulation, 38(10), 185-188+203.

Amoia, A. , Coleman, E. & Mabry, L. M. . (2021). Cervical neuroforaminal stenosis with radiculopathy. Journal of Orthopaedic and Sports Physical Therapy, 1(1), 34-35.

Zhong, X. , Law, M. K. , Tsui, C. Y. & Bermak, A. (2020). A fully dynamic multi-mode cmos vision sensor with mixed-signal cooperative motion sensing and object segmentation for adaptive edge computing. IEEE Journal of Solid-State Circuits, 55(6), 1684-1697. DOI: https://doi.org/10.1109/JSSC.2019.2961848

Lin, C. H. & Chen, K. H. (2021). Development of optical depth-sensing technology with a mechanical control lens and diffuser. Applied Optics, 60(10), B125. DOI: https://doi.org/10.1364/AO.415431

Prakosa, J. A. , Kukaev, A. S. , Parfenov, V. A. & Venediktov, V. Y. (2020). Simple automatic fluid displacement measurement by time-of-flight laser sensing technology for volume calibrator need. Journal of Optics, 49(1), 69-75. DOI: https://doi.org/10.1007/s12596-020-00596-5

Junhui, H. , Miaowei, Q. , Zhao, W. , Chao, X. & Jianmin, G. (2021). High precision measurement for the chamfered hole radius and spacing of a large-size workpiece based on binocular vision combined with plane dynamic adjustment. Applied optics, 60(29), 9232-9240. DOI: https://doi.org/10.1364/AO.432298

Wang, J. , Liu, J. , Xu, X. , Yu, Z. & Li, Z. (2022). A single foot-mounted pedestrian navigation algorithm based on the maximum gait displacement constraint in three-dimensional space. Measurement Science and Technology, 33(5), 055113 (10pp). DOI: https://doi.org/10.1088/1361-6501/ac471b

Janan, F. & Brady, M. (2021). Rice: a method for quantitative mammographic image enhancement. Medical Image Analysis, 71(2), 102043. DOI: https://doi.org/10.1016/j.media.2021.102043

Ramli, R. , Idris, M. , Hasikin, K. , Karim, N. , Wahab, A. & Ahmed Y , I. , et al. (2020). Local descriptor for retinal fundus image registration. IET Computer Vision, 14(4), 144-153. DOI: https://doi.org/10.1049/iet-cvi.2019.0623

Liu, S. , Wang, S. , Liu, X. , Gandomi, A. H. , Daneshmand M. , Muhammad, K. & De Albuquerque, V. H. C. (2021) Human Memory Update Strategy: A Multi-Layer Template Update Mechanism for Remote Visual Monitoring, IEEE Transactions on Multimedia, 23, 2188-2198

Li, X. , Deng, Q. , Ma, S. , Zhang, L. & Kuang, Y. (2020). Analysis of key factors for radiomic feature extraction stability and robustness on 4dct image. International Journal of Radiation Oncology Biology Physics, 108(3), e783. DOI: https://doi.org/10.1016/j.ijrobp.2020.07.246

Xie, W. , Lei, J. , Fang, S. , Li, Y. & Li, M. (2021). Dual feature extraction network for hyperspectral image analysis. Pattern Recognition, 118(7), 107992. DOI: https://doi.org/10.1016/j.patcog.2021.107992

Liu, S. , Wang, S. , Liu, X. , Lin, C. T. & Lv, Z. (2021) Fuzzy Detection aided Real-time and Robust Visual Tracking under Complex Environments. IEEE Transactions on Fuzzy Systems, 29(1), 90-102 DOI: https://doi.org/10.1109/TFUZZ.2020.3006520

Qin, X. , Li, J. , Hu, W. & Yang, J. (2020). Machine learning k-means clustering algorithm for interpolative separable density fitting to accelerate hybrid functional calculations with numerical atomic orbitals. Journal of Physical Chemistry A, 124(48), 10066-10074. DOI: https://doi.org/10.1021/acs.jpca.0c06019

Shuai, L. , Shuai, W. , Xinyu, L. , Jianhua, D. , Khan, M. , Amir, H. G. , Weiping, D. & Victor, H. C. de A. (2022) Human Inertial Thinking Strategy: A Novel Fuzzy Reasoning Mechanism for IoT-Assisted Visual Monitoring, . IEEE Internet of Things Journal, online first, 10.1109/JIOT.2022.3142115

Downloads

Published

28-07-2022

How to Cite

1.
Wu X. Anatomical mining method of cervical nerve root syndrome under visual sensing technology. EAI Endorsed Trans Perv Health Tech [Internet]. 2022 Jul. 28 [cited 2024 Nov. 16];8(3):e3. Available from: https://publications.eai.eu/index.php/phat/article/view/657