Computer Science > Logic in Computer Science
[Submitted on 30 Nov 2017]
Title:Tool Supported Analysis of IoT
View PDFAbstract:The design of IoT systems could benefit from the combination of two different analyses. We perform a first analysis to approximate how data flow across the system components, while the second analysis checks their communication soundness. We show how the combination of these two analyses yields further benefits hardly achievable by separately using each of them. We exploit two independently developed tools for the analyses.
Firstly, we specify IoT systems in IoT-LySa, a simple specification language featuring asynchronous multicast communication of tuples. The values carried by the tuples are drawn from a term-algebra obtained by a parametric signature. The analysis of communication soundness is supported by ChorGram, a tool developed to verify the compatibility of communicating finite-state machines. In order to combine the analyses we implement an encoding of IoT-LySa processes into communicating machines. This encoding is not completely straightforward because IoT-LySa has multicast communications with data, while communication machines are based on point-to-point communications where only finitely many symbols can be exchanged. To highlight the benefits of our approach we appeal to a simple yet illustrative example.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Thu, 30 Nov 2017 03:46:09 UTC (335 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.