Computer Science > Artificial Intelligence
[Submitted on 28 Feb 2014]
Title:Robot Location Estimation in the Situation Calculus
View PDFAbstract:Location estimation is a fundamental sensing task in robotic applications, where the world is uncertain, and sensors and effectors are noisy. Most systems make various assumptions about the dependencies between state variables, and especially about how these dependencies change as a result of actions. Building on a general framework by Bacchus, Halpern and Levesque for reasoning about degrees of belief in the situation calculus, and a recent extension to it for continuous domains, in this paper we illustrate location estimation in the presence of a rich theory of actions using an example. We also show that while actions might affect prior distributions in nonstandard ways, suitable posterior beliefs are nonetheless entailed as a side-effect of the overall specification.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.