Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Nov 2015 (v1), last revised 5 Jul 2016 (this version, v5)]
Title:Similarity-based Text Recognition by Deeply Supervised Siamese Network
View PDFAbstract:In this paper, we propose a new text recognition model based on measuring the visual similarity of text and predicting the content of unlabeled texts. First a Siamese convolutional network is trained with deep supervision on a labeled training dataset. This network projects texts into a similarity manifold. The Deeply Supervised Siamese network learns visual similarity of texts. Then a K-nearest neighbor classifier is used to predict unlabeled text based on similarity distance to labeled texts. The performance of the model is evaluated on three datasets of machine-print and hand-written text combined. We demonstrate that the model reduces the cost of human estimation by $50\%-85\%$. The error of the system is less than $0.5\%$. The proposed model outperform conventional Siamese network by finding visually-similar barely-readable and readable text, e.g. machine-printed, handwritten, due to deep supervision. The results also demonstrate that the predicted labels are sometimes better than human labels e.g. spelling correction.
Submission history
From: Ehsan Hosseini-Asl [view email][v1] Fri, 13 Nov 2015 18:46:01 UTC (2,444 KB)
[v2] Wed, 18 Nov 2015 20:59:10 UTC (2,508 KB)
[v3] Fri, 8 Jan 2016 00:37:29 UTC (1,899 KB)
[v4] Sun, 3 Jul 2016 16:38:35 UTC (1,896 KB)
[v5] Tue, 5 Jul 2016 01:21:08 UTC (1,897 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.