Computer Science > Networking and Internet Architecture
[Submitted on 31 Mar 2019]
Title:Impact of Distributed Processing on Power Consumption for IoT Based Surveillance Applications
View PDFAbstract:With the rapid proliferation of connected devices in the Internet of Things (IoT), the centralized cloud solution faces several challenges, out of which, there is an overwhelming consensus to put energy efficiency at the top of the research agenda. In this paper, we evaluate the impact of demand splitting over heterogeneous processing resources in an IoT platform, supported by Fog and Cloud infrastructure. We develop a Mixed Integer Linear Programming (MILP) model to study the gains of splitting resource intensive demands among IoT nodes, Fog devices and Cloud servers. A surveillance application is considered, which consists of multiple smart cameras capable of capturing and analyzing real-time video streams. The PON access network aggregates IoT layer demands for processing in the Fog, or the Cloud which is accessed through the IP/WDM network. For typical video analysis workloads, the results show that splitting medium demand sizes among IoT and Fog resources yields a total power consumption saving of up to 32%, even if they can host only 10% of the total workload and this can reach 93% for lower number of demands, compared to the centralized cloud solution. However, the gains in power savings from splitting decreases as the number of splits increases. Keywords: IoT surveillance, PON, energy efficiency, fog, distributed processing.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.