Mathematics > Numerical Analysis
[Submitted on 19 Dec 2019]
Title:Parareal computation of stochastic differential equations with time-scale separation: a numerical study
View PDFAbstract:The parareal algorithm is known to allow for a significant reduction in wall clock time for accurate numerical solutions by parallelising across the time dimension. We present and test a micro-macro version of parareal, in which the fine propagator is based on a (high-dimensional, slow-fast) stochastic microscopic model, and the coarse propagator is based on a low-dimensional approximate effective dynamics at slow time scales. At the microscopic level, we use an ensemble of Monte Carlo particles, whereas the approximate coarse propagator uses the (deterministic) Fokker-Planck equation for the slow degrees of freedom. The required coupling between microscopic and macroscopic representations of the system introduces several design options, specifically on how to generate a microscopic probability distribution consistent with a required macroscopic probability distribution and how to perform the coarse-level updating of the macroscopic probability distribution in a meaningful manner. We numerically study how these design options affect the efficiency of the algorithm in a number of situations. The choice of the coarse-level updating operator strongly impacts the result, with a superior performance if addition and subtraction of the quantile function (inverse cumulative distribution) is used. How microscopic states are generated has a less pronounced impact, provided a suitable prior microscopic state is used.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.