Computer Science > Robotics
[Submitted on 2 Mar 2022 (v1), last revised 17 Jul 2022 (this version, v3)]
Title:Pareto Frontier Approximation Network (PA-Net) to Solve Bi-objective TSP
View PDFAbstract:The travelling salesperson problem (TSP) is a classic resource allocation problem used to find an optimal order of doing a set of tasks while minimizing (or maximizing) an associated objective function. It is widely used in robotics for applications such as planning and scheduling. In this work, we solve TSP for two objectives using reinforcement learning (RL). Often in multi-objective optimization problems, the associated objective functions can be conflicting in nature. In such cases, the optimality is defined in terms of Pareto optimality. A set of these Pareto optimal solutions in the objective space form a Pareto front (or frontier). Each solution has its trade-off. We present the Pareto frontier approximation network (PA-Net), a network that generates good approximations of the Pareto front for the bi-objective travelling salesperson problem (BTSP). Firstly, BTSP is converted into a constrained optimization problem. We then train our network to solve this constrained problem using the Lagrangian relaxation and policy gradient. With PA-Net we improve the performance over an existing deep RL-based method. The average improvement in the hypervolume metric, which is used to measure the optimality of the Pareto front, is 2.3%. At the same time, PA-Net has 4.5x faster inference time. Finally, we present the application of PA-Net to find optimal visiting order in a robotic navigation task/coverage planning. Our code is available on the project website.
Submission history
From: Ishaan Mehta [view email][v1] Wed, 2 Mar 2022 18:25:45 UTC (2,660 KB)
[v2] Thu, 3 Mar 2022 15:24:31 UTC (2,661 KB)
[v3] Sun, 17 Jul 2022 16:38:49 UTC (3,752 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.