Computer Science > Computation and Language
[Submitted on 4 Mar 2022]
Title:IISERB Brains at SemEval 2022 Task 6: A Deep-learning Framework to Identify Intended Sarcasm in English
View PDFAbstract:This paper describes the system architectures and the models submitted by our team "IISERBBrains" to SemEval 2022 Task 6 competition. We contested for all three sub-tasks floated for the English dataset. On the leader-board, wegot19th rank out of43 teams for sub-taskA, the 8th rank out of22 teams for sub-task B,and13th rank out of 16 teams for sub-taskC. Apart from the submitted results and models, we also report the other models and results that we obtained through our experiments after organizers published the gold labels of their evaluation data
Submission history
From: Tanuj Singh Shekhawat [view email][v1] Fri, 4 Mar 2022 11:23:54 UTC (34 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.