Computer Science > Robotics
[Submitted on 4 Mar 2022 (v1), last revised 15 Jul 2022 (this version, v3)]
Title:Learning Goal-Oriented Non-Prehensile Pushing in Cluttered Scenes
View PDFAbstract:Pushing objects through cluttered scenes is a challenging task, especially when the objects to be pushed have initially unknown dynamics and touching other entities has to be avoided to reduce the risk of damage. In this paper, we approach this problem by applying deep reinforcement learning to generate pushing actions for a robotic manipulator acting on a planar surface where objects have to be pushed to goal locations while avoiding other items in the same workspace. With the latent space learned from a depth image of the scene and other observations of the environment, such as contact information between the end effector and the object as well as distance to the goal, our framework is able to learn contact-rich pushing actions that avoid collisions with other objects. As the experimental results with a six degrees of freedom robotic arm show, our system is able to successfully push objects from start to end positions while avoiding nearby objects. Furthermore, we evaluate our learned policy in comparison to a state-of-the-art pushing controller for mobile robots and show that our agent performs better in terms of success rate, collisions with other objects, and continuous object contact in various scenarios.
Submission history
From: Nils Dengler [view email][v1] Fri, 4 Mar 2022 15:52:36 UTC (1,453 KB)
[v2] Thu, 14 Jul 2022 15:28:18 UTC (1,666 KB)
[v3] Fri, 15 Jul 2022 08:33:30 UTC (1,666 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.