Electrical Engineering and Systems Science > Systems and Control
[Submitted on 8 Mar 2022 (v1), last revised 7 Apr 2023 (this version, v2)]
Title:Evaluating feasibility of batteries for second-life applications using machine learning
View PDFAbstract:This paper presents a combination of machine learning techniques to enable prompt evaluation of retired electric vehicle batteries as to either retain those batteries for a second-life application and extend their operation beyond the original and first intent or send them to recycle facilities. The proposed algorithm generates features from available battery current and voltage measurements with simple statistics, selects and ranks the features using correlation analysis, and employs Gaussian Process Regression enhanced with bagging. This approach is validated over publicly available aging datasets of more than 200 cells with slow and fast charging, with different cathode chemistries, and for diverse operating conditions. Promising results are observed based on multiple training-test partitions, wherein the mean of Root Mean Squared Percent Error and Mean Percent Error performance errors are found to be less than 1.48% and 1.29%, respectively, in the worst-case scenarios.
Submission history
From: Anirudh Allam [view email][v1] Tue, 8 Mar 2022 18:07:33 UTC (1,413 KB)
[v2] Fri, 7 Apr 2023 15:55:50 UTC (921 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.