Computer Science > Data Structures and Algorithms
[Submitted on 18 Mar 2022 (v1), last revised 17 Feb 2023 (this version, v2)]
Title:Exact approaches for the Connected Vertex Cover problem
View PDFAbstract:Given a graph $G$, the Connected Vertex Cover problem (CVC) asks to find a minimum cardinality vertex cover of $G$ that induces a connected subgraph. In this paper we describe some approaches to solve the CVC problem exactly. First, we give compact mixed-integer extended formulations for CVC: these are the first formulations proposed for this problem, and can be easily adapted to variations of the problem such as Tree Cover. Second, we describe a simple branch and bound algorithm for the CVC problem. Finally, we implement our algorithm and compare its performance against our best formulation: contrary to what usually happens for the classical Vertex Cover problem, our formulation outperforms the branch and bound algorithm.
Submission history
From: Manuel Aprile [view email][v1] Fri, 18 Mar 2022 11:18:57 UTC (21 KB)
[v2] Fri, 17 Feb 2023 08:44:17 UTC (15 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.