Computer Science > Sound
[Submitted on 25 Mar 2022 (v1), last revised 29 Mar 2022 (this version, v2)]
Title:Audio-text Retrieval in Context
View PDFAbstract:Audio-text retrieval based on natural language descriptions is a challenging task. It involves learning cross-modality alignments between long sequences under inadequate data conditions. In this work, we investigate several audio features as well as sequence aggregation methods for better audio-text alignment. Moreover, through a qualitative analysis we observe that semantic mapping is more important than temporal relations in contextual retrieval. Using pre-trained audio features and a descriptor-based aggregation method, we build our contextual audio-text retrieval system. Specifically, we utilize PANNs features pre-trained on a large sound event dataset and NetRVLAD pooling, which directly works with averaged descriptors. Experiments are conducted on the AudioCaps and CLOTHO datasets, and results are compared with the previous state-of-the-art system. With our proposed system, a significant improvement has been achieved on bidirectional audio-text retrieval, on all metrics including recall, median and mean rank.
Submission history
From: Xuenan Xu [view email][v1] Fri, 25 Mar 2022 13:41:17 UTC (356 KB)
[v2] Tue, 29 Mar 2022 04:32:47 UTC (356 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.