Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Apr 2022 (v1), last revised 3 Jun 2023 (this version, v5)]
Title:Learning Constrained Dynamic Correlations in Spatiotemporal Graphs for Motion Prediction
View PDFAbstract:Human motion prediction is challenging due to the complex spatiotemporal feature modeling. Among all methods, graph convolution networks (GCNs) are extensively utilized because of their superiority in explicit connection modeling. Within a GCN, the graph correlation adjacency matrix drives feature aggregation and is the key to extracting predictive motion features. State-of-the-art methods decompose the spatiotemporal correlation into spatial correlations for each frame and temporal correlations for each joint. Directly parameterizing these correlations introduces redundant parameters to represent common relations shared by all frames and all joints. Besides, the spatiotemporal graph adjacency matrix is the same for different motion samples and cannot reflect sample-wise correspondence variances. To overcome these two bottlenecks, we propose dynamic spatiotemporal decompose GC (DSTD-GC), which only takes 28.6% parameters of the state-of-the-art GC. The key of DSTD-GC is constrained dynamic correlation modeling, which explicitly parameterizes the common static constraints as a spatial/temporal vanilla adjacency matrix shared by all frames/joints and dynamically extracts correspondence variances for each frame/joint with an adjustment modeling function. For each sample, the common constrained adjacency matrices are fixed to represent generic motion patterns, while the extracted variances complete the matrices with specific pattern adjustments. Meanwhile, we mathematically reformulate GCs on spatiotemporal graphs into a unified form and find that DSTD-GC relaxes certain constraints of other GC, which contributes to a better representation capability. By combining DSTD-GC with prior knowledge, we propose a powerful spatiotemporal GCN called DSTD-GCN, which outperforms SOTA methods by $3.9\% \sim 8.7\%$ in prediction accuracy with $55.0\% \sim 96.9\%$ fewer parameters.
Submission history
From: Jiajun Fu [view email][v1] Mon, 4 Apr 2022 08:11:06 UTC (2,856 KB)
[v2] Wed, 13 Apr 2022 14:57:04 UTC (5,453 KB)
[v3] Thu, 14 Apr 2022 01:41:25 UTC (5,453 KB)
[v4] Thu, 12 May 2022 03:40:02 UTC (5,453 KB)
[v5] Sat, 3 Jun 2023 05:36:56 UTC (13,714 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.