Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 8 Apr 2022 (v1), last revised 22 Nov 2022 (this version, v2)]
Title:Analysis and transformations of voice level in singing voice
View PDFAbstract:We introduce a neural auto-encoder that transforms the musical dynamic in recordings of singing voice via changes in voice level. Since most recordings of singing voice are not annotated with voice level we propose a means to estimate the voice level from the signal's timbre using a neural voice level estimator. We introduce the recording factor that relates the voice level to the recorded signal power as a proportionality constant. This unknown constant depends on the recording conditions and the post-processing and may thus be different for each recording (but is constant across each recording). We provide two approaches to estimate the voice level without knowing the recording factor. The unknown recording factor can either be learned alongside the weights of the voice level estimator, or a special loss function based on the scalar product can be used to only match the contour of the recorded signal's power. The voice level models are used to condition a previously introduced bottleneck auto-encoder that disentangles its input, the mel-spectrogram, from the voice level. We evaluate the voice level models on recordings annotated with musical dynamic and by their ability to provide useful information to the auto-encoder. A perceptive test is carried out that evaluates the perceived change in voice level in transformed recordings and the synthesis quality. The perceptive test confirms that changing the conditional input changes the perceived voice level accordingly thus suggesting that the proposed voice level models encode information about the true voice level.
Submission history
From: Frederik Bous [view email][v1] Fri, 8 Apr 2022 11:34:33 UTC (434 KB)
[v2] Tue, 22 Nov 2022 14:41:53 UTC (56 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.