Computer Science > Neural and Evolutionary Computing
[Submitted on 8 Apr 2022 (v1), last revised 11 Apr 2022 (this version, v2)]
Title:Improving LSHADE by means of a pre-screening mechanism
View PDFAbstract:Evolutionary algorithms have proven to be highly effective in continuous optimization, especially when numerous fitness function evaluations (FFEs) are possible. In certain cases, however, an expensive optimization approach (i.e. with relatively low number of FFEs) must be taken, and such a setting is considered in this work. The paper introduces an extension to the well-known LSHADE algorithm in the form of a pre-screening mechanism (psLSHADE). The proposed pre-screening relies on the three following components: a specific initial sampling procedure, an archive of samples, and a global linear meta-model of a fitness function that consists of 6 independent transformations of variables. The pre-screening mechanism preliminary assesses the trial vectors and designates the best one of them for further evaluation with the fitness function. The performance of psLSHADE is evaluated using the CEC2021 benchmark in an expensive scenario with an optimization budget of 10^2-10^4 FFEs per dimension. We compare psLSHADE with the baseline LSHADE method and the MadDE algorithm. The results indicate that with restricted optimization budgets psLSHADE visibly outperforms both competitive algorithms. In addition, the use of the pre-screening mechanism results in faster population convergence of psLSHADE compared to LSHADE.
Submission history
From: Mateusz Zaborski [view email][v1] Fri, 8 Apr 2022 14:52:46 UTC (9,886 KB)
[v2] Mon, 11 Apr 2022 14:27:13 UTC (3,333 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.