Computer Science > Cryptography and Security
[Submitted on 19 Apr 2022]
Title:Heterogeneous Feature Augmentation for Ponzi Detection in Ethereum
View PDFAbstract:While blockchain technology triggers new industrial and technological revolutions, it also brings new challenges. Recently, a large number of new scams with a "blockchain" sock-puppet continue to emerge, such as Ponzi schemes, money laundering, etc., seriously threatening financial security. Existing fraud detection methods in blockchain mainly concentrate on manual feature and graph analytics, which first construct a homogeneous transaction graph using partial blockchain data and then use graph analytics to detect anomaly, resulting in a loss of pattern information. In this paper, we mainly focus on Ponzi scheme detection and propose HFAug, a generic Heterogeneous Feature Augmentation module that can capture the heterogeneous information associated with account behavior patterns and can be combined with existing Ponzi detection methods. HFAug learns the metapath-based behavior characteristics in an auxiliary heterogeneous interaction graph, and aggregates the heterogeneous features to corresponding account nodes in the homogeneous one where the Ponzi detection methods are performed. Comprehensive experimental results demonstrate that our HFAug can help existing Ponzi detection methods achieve significant performance improvement on Ethereum datasets, suggesting the effectiveness of heterogeneous information on detecting Ponzi schemes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.