Computer Science > Information Theory
[Submitted on 3 May 2022 (v1), last revised 2 Sep 2022 (this version, v2)]
Title:MMSE Signal Detection for MIMO Systems based on Ordinary Differential Equation
View PDFAbstract:Motivated by emerging technologies for energy efficient analog computing and continuous-time processing, this paper proposes continuous-time minimum mean squared error estimation for multiple-input multiple-output (MIMO) systems based on an ordinary differential equation. Mean squared error (MSE) is a principal detection performance measure of estimation methods for MIMO systems. We derive an analytical MSE formula that indicates the MSE at any time. The MSE of the proposed method depends on a regularization parameter which affects the convergence property of the MSE. Furthermore, we extend the proposed method by using a time-dependent regularization parameter to achieve better convergence performance. Numerical experiments indicated excellent agreement with the theoretical values and improvement in the convergence performance owing to the use of the time-dependent parameter.
Submission history
From: Ayano Nakai-Kasai [view email][v1] Tue, 3 May 2022 06:50:56 UTC (177 KB)
[v2] Fri, 2 Sep 2022 10:17:37 UTC (178 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.