Computer Science > Cryptography and Security
[Submitted on 6 May 2022]
Title:Imperceptible Backdoor Attack: From Input Space to Feature Representation
View PDFAbstract:Backdoor attacks are rapidly emerging threats to deep neural networks (DNNs). In the backdoor attack scenario, attackers usually implant the backdoor into the target model by manipulating the training dataset or training process. Then, the compromised model behaves normally for benign input yet makes mistakes when the pre-defined trigger appears. In this paper, we analyze the drawbacks of existing attack approaches and propose a novel imperceptible backdoor attack. We treat the trigger pattern as a special kind of noise following a multinomial distribution. A U-net-based network is employed to generate concrete parameters of multinomial distribution for each benign input. This elaborated trigger ensures that our approach is invisible to both humans and statistical detection. Besides the design of the trigger, we also consider the robustness of our approach against model diagnose-based defences. We force the feature representation of malicious input stamped with the trigger to be entangled with the benign one. We demonstrate the effectiveness and robustness against multiple state-of-the-art defences through extensive datasets and networks. Our trigger only modifies less than 1\% pixels of a benign image while the modification magnitude is 1. Our source code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.