Computer Science > Information Retrieval
[Submitted on 12 May 2022 (v1), last revised 3 Jul 2024 (this version, v3)]
Title:Improving Sequential Query Recommendation with Immediate User Feedback
View PDF HTML (experimental)Abstract:We propose an algorithm for next query recommendation in interactive data exploration settings, like knowledge discovery for information gathering. The state-of-the-art query recommendation algorithms are based on sequence-to-sequence learning approaches that exploit historical interaction data. Due to the supervision involved in the learning process, such approaches fail to adapt to immediate user feedback. We propose to augment the transformer-based causal language models for query recommendations to adapt to the immediate user feedback using multi-armed bandit (MAB) framework. We conduct a large-scale experimental study using log files from a popular online literature discovery service and demonstrate that our algorithm improves the per-round regret substantially, with respect to the state-of-the-art transformer-based query recommendation models, which do not make use of immediate user feedback. Our data model and source code are available at this https URL
Submission history
From: Shameem A Puthiya Parambath Mr. [view email][v1] Thu, 12 May 2022 18:19:24 UTC (257 KB)
[v2] Thu, 1 Sep 2022 20:57:17 UTC (253 KB)
[v3] Wed, 3 Jul 2024 19:44:31 UTC (351 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.