Computer Science > Data Structures and Algorithms
[Submitted on 2 Jul 2022]
Title:Efficient and Effective Local Search for the Set-Union Knapsack Problem and Budgeted Maximum Coverage Problem
View PDFAbstract:The Set-Union Knapsack Problem (SUKP) and Budgeted Maximum Coverage Problem (BMCP) are two closely related variant problems of the popular knapsack problem. Given a set of weighted elements and a set of items with nonnegative values, where each item covers several distinct elements, these two problems both aim to find a subset of items that maximizes an objective function while satisfying a knapsack capacity (budget) constraint. We propose an efficient and effective local search algorithm called E2LS for these two problems. To our knowledge, this is the first time that an algorithm has been proposed for both of them. E2LS trade-offs the search region and search efficiency by applying a proposed novel operator ADD$^*$ to traverse the refined search region. Such a trade-off mechanism allows E2LS to explore the solution space widely and quickly. The tabu search method is also applied in E2LS to help the algorithm escape from local optima. Extensive experiments on a total of 168 public instances with various scales demonstrate the excellent performance of the proposed algorithm for both the SUKP and BMCP.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.