Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Aug 2022 (v1), last revised 16 Dec 2022 (this version, v3)]
Title:MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth
View PDFAbstract:Feature representation learning is the key recipe for learning-based Multi-View Stereo (MVS). As the common feature extractor of learning-based MVS, vanilla Feature Pyramid Networks (FPNs) suffer from discouraged feature representations for reflection and texture-less areas, which limits the generalization of MVS. Even FPNs worked with pre-trained Convolutional Neural Networks (CNNs) fail to tackle these issues. On the other hand, Vision Transformers (ViTs) have achieved prominent success in many 2D vision tasks. Thus we ask whether ViTs can facilitate feature learning in MVS? In this paper, we propose a pre-trained ViT enhanced MVS network called MVSFormer, which can learn more reliable feature representations benefited by informative priors from ViT. The finetuned MVSFormer with hierarchical ViTs of efficient attention mechanisms can achieve prominent improvement based on FPNs. Besides, the alternative MVSFormer with frozen ViT weights is further proposed. This largely alleviates the training cost with competitive performance strengthened by the attention map from the self-distillation pre-training. MVSFormer can be generalized to various input resolutions with efficient multi-scale training strengthened by gradient accumulation. Moreover, we discuss the merits and drawbacks of classification and regression-based MVS methods, and further propose to unify them with a temperature-based strategy. MVSFormer achieves state-of-the-art performance on the DTU dataset. Particularly, MVSFormer ranks as Top-1 on both intermediate and advanced sets of the highly competitive Tanks-and-Temples leaderboard.
Submission history
From: Chenjie Cao [view email][v1] Thu, 4 Aug 2022 09:17:30 UTC (22,118 KB)
[v2] Mon, 8 Aug 2022 16:49:16 UTC (25,079 KB)
[v3] Fri, 16 Dec 2022 13:42:24 UTC (40,267 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.