Mathematics > Numerical Analysis
[Submitted on 13 Aug 2022]
Title:Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equations
View PDFAbstract:This paper develops the structure-preserving finite volume weighted essentially non-oscillatory (WENO) hybrid schemes for the shallow water equations under the arbitrary Lagrangian-Eulerian (ALE) framework, dubbed as ALE-WENO schemes. The WENO hybrid reconstruction is adopted on moving meshes, which distinguishes the smooth, non-smooth, and transition stencils by a simple smoothness detector. To maintain the positivity preserving and the well-balanced properties of the ALE-WENO schemes, we adapt the positivity preserving limiter and the well-balanced approaches on static meshes to moving meshes. The rigorous theoretical analysis and numerical examples demonstrate the high order accuracy and positivity-preserving property of the schemes under the ALE framework. For the well-balanced schemes, it is successful in the unique exact equilibrium preservation and capturing small perturbations of the hydrostatic state well without numerical oscillations near the discontinuity. Moreover, our ALE-WENO hybrid schemes have an advantage over the simulations on static meshes due to the higher resolution interface tracking of the fluid motion.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.