Computer Science > Information Retrieval
[Submitted on 29 Aug 2022 (v1), last revised 5 Feb 2023 (this version, v2)]
Title:Modeling Adaptive Fine-grained Task Relatedness for Joint CTR-CVR Estimation
View PDFAbstract:In modern advertising and recommender systems, multi-task learning (MTL) paradigm has been widely employed to jointly predict diverse user feedbacks (e.g. click and purchase). While, existing MTL approaches are either rigid to adapt to different scenarios, or only capture coarse-grained task relatedness, thus making it difficult to effectively transfer knowledge across tasks.
To address these issues, in this paper, we propose an Adaptive Fine-grained Task Relatedness modeling approach, AdaFTR, for joint CTR-CVR estimation. Our approach is developed based on a parameter-sharing MTL architecture, and introduces a novel adaptive inter-task representation alignment method based on contrastive this http URL an instance, the inter-task representations of the same instance are considered as positive, while the representations of another random instance are considered as negative. Furthermore, we explicitly model fine-grained task relatedness as the contrast strength (i.e. the temperature coefficient in InfoNCE loss) at the instance level. For this purpose, we build a relatedness prediction network, so that it can predict the contrast strength for inter-task representations of an instance. In this way, we can adaptively set the temperature for contrastive learning in a fine-grained way (i.e. instance level), so as to better capture task relatedness. Both offline evaluation with public e-commerce datasets and online test in a real advertising system at Alibaba have demonstrated the effectiveness of our approach.
Submission history
From: Zihan Lin [view email][v1] Mon, 29 Aug 2022 09:21:09 UTC (284 KB)
[v2] Sun, 5 Feb 2023 08:05:58 UTC (1,867 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.