Computer Science > Machine Learning
[Submitted on 30 Aug 2022]
Title:Super-model ecosystem: A domain-adaptation perspective
View PDFAbstract:This paper attempts to establish the theoretical foundation for the emerging super-model paradigm via domain adaptation, where one first trains a very large-scale model, {\it i.e.}, super model (or foundation model in some other papers), on a large amount of data and then adapts it to various specific domains. Super-model paradigms help reduce computational and data cost and carbon emission, which is critical to AI industry, especially enormous small and medium-sized enterprises. We model the super-model paradigm as a two-stage diffusion process: (1) in the pre-training stage, the model parameter diffuses from random initials and converges to a steady distribution; and (2) in the fine-tuning stage, the model parameter is transported to another steady distribution. Both training stages can be mathematically modeled by the Uhlenbeck-Ornstein process which converges to two Maxwell-Boltzmann distributions, respectively, each of which characterizes the corresponding convergent model. An $\mathcal O(1/\sqrt{N})$ generalization bound is then established via PAC-Bayesian framework. The theory finds that the generalization error of the fine-tuning stage is dominant in domain adaptation. In addition, our theory suggests that the generalization is determined by a new measure that characterizes the domain discrepancy between the source domain and target domain, based on the covariance matrices and the shift of the converged local minimum.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.