Computer Science > Artificial Intelligence
[Submitted on 2 Sep 2022]
Title:Object-based active inference
View PDFAbstract:The world consists of objects: distinct entities possessing independent properties and dynamics. For agents to interact with the world intelligently, they must translate sensory inputs into the bound-together features that describe each object. These object-based representations form a natural basis for planning behavior. Active inference (AIF) is an influential unifying account of perception and action, but existing AIF models have not leveraged this important inductive bias. To remedy this, we introduce 'object-based active inference' (OBAI), marrying AIF with recent deep object-based neural networks. OBAI represents distinct objects with separate variational beliefs, and uses selective attention to route inputs to their corresponding object slots. Object representations are endowed with independent action-based dynamics. The dynamics and generative model are learned from experience with a simple environment (active multi-dSprites). We show that OBAI learns to correctly segment the action-perturbed objects from video input, and to manipulate these objects towards arbitrary goals.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.