Computer Science > Machine Learning
[Submitted on 15 Sep 2022 (v1), last revised 28 Feb 2023 (this version, v2)]
Title:The Cost of Training Machine Learning Models over Distributed Data Sources
View PDFAbstract:Federated learning is one of the most appealing alternatives to the standard centralized learning paradigm, allowing a heterogeneous set of devices to train a machine learning model without sharing their raw data. However, it requires a central server to coordinate the learning process, thus introducing potential scalability and security issues. In the literature, server-less federated learning approaches like gossip federated learning and blockchain-enabled federated learning have been proposed to mitigate these issues. In this work, we propose a complete overview of these three techniques proposing a comparison according to an integral set of performance indicators, including model accuracy, time complexity, communication overhead, convergence time, and energy consumption. An extensive simulation campaign permits to draw a quantitative analysis considering both feedforward and convolutional neural network models. Results show that gossip federated learning and standard federated solution are able to reach a similar level of accuracy, and their energy consumption is influenced by the machine learning model adopted, the software library, and the hardware used. Differently, blockchain-enabled federated learning represents a viable solution for implementing decentralized learning with a higher level of security, at the cost of an extra energy usage and data sharing. Finally, we identify open issues on the two decentralized federated learning implementations and provide insights on potential extensions and possible research directions in this new research field.
Submission history
From: Elia Guerra [view email][v1] Thu, 15 Sep 2022 08:13:40 UTC (8,332 KB)
[v2] Tue, 28 Feb 2023 14:21:09 UTC (3,283 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.