Computer Science > Robotics
[Submitted on 29 Sep 2022 (v1), last revised 17 Mar 2024 (this version, v2)]
Title:Accelerating Laboratory Automation Through Robot Skill Learning For Sample Scraping
View PDF HTML (experimental)Abstract:The use of laboratory robotics for autonomous experiments offers an attractive route to alleviate scientists from tedious tasks while accelerating material discovery for topical issues such as climate change and pharmaceuticals. While some experimental workflows can already benefit from automation, sample preparation is still carried out manually due to the high level of motor function and dexterity required when dealing with different tools, chemicals, and glassware. A fundamental workflow in chemical fields is crystallisation, where one application is polymorph screening, i.e., obtaining a three dimensional molecular structure from a crystal. For this process, it is of utmost importance to recover as much of the sample as possible since synthesising molecules is both costly in time and money. To this aim, chemists scrape vials to retrieve sample contents prior to imaging plate transfer. Automating this process is challenging as it goes beyond robotic insertion tasks due to a fundamental requirement of having to execute fine-granular movements within a constrained environment (sample vial). Motivated by how human chemists carry out this process of scraping powder from vials, our work proposes a model-free reinforcement learning method for learning a scraping policy, leading to a fully autonomous sample scraping procedure. We first create a scenario-specific simulation environment with a Panda Franka Emika robot using a laboratory scraper that is inserted into a simulated vial, to demonstrate how a scraping policy can be learned successfully in simulation. We then train and evaluate our method on a real robotic manipulator in laboratory settings, and show that our method can autonomously scrape powder across various setups.
Submission history
From: Gabriella Pizzuto [view email][v1] Thu, 29 Sep 2022 15:40:12 UTC (19,562 KB)
[v2] Sun, 17 Mar 2024 20:10:16 UTC (19,209 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.