Computer Science > Sound
[Submitted on 1 Oct 2022]
Title:Multi-stage Progressive Compression of Conformer Transducer for On-device Speech Recognition
View PDFAbstract:The smaller memory bandwidth in smart devices prompts development of smaller Automatic Speech Recognition (ASR) models. To obtain a smaller model, one can employ the model compression techniques. Knowledge distillation (KD) is a popular model compression approach that has shown to achieve smaller model size with relatively lesser degradation in the model performance. In this approach, knowledge is distilled from a trained large size teacher model to a smaller size student model. Also, the transducer based models have recently shown to perform well for on-device streaming ASR task, while the conformer models are efficient in handling long term dependencies. Hence in this work we employ a streaming transducer architecture with conformer as the encoder. We propose a multi-stage progressive approach to compress the conformer transducer model using KD. We progressively update our teacher model with the distilled student model in a multi-stage setup. On standard LibriSpeech dataset, our experimental results have successfully achieved compression rates greater than 60% without significant degradation in the performance compared to the larger teacher model.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.