Computer Science > Cryptography and Security
[Submitted on 14 Oct 2022]
Title:Let's Talk Through Physics! Covert Cyber-Physical Data Exfiltration on Air-Gapped Edge Devices
View PDFAbstract:Although organizations are continuously making concerted efforts to harden their systems against network attacks by air-gapping critical systems, attackers continuously adapt and uncover covert channels to exfiltrate data from air-gapped systems. For instance, attackers have demonstrated the feasibility of exfiltrating data from a computer sitting in a Faraday cage by exfiltrating data using magnetic fields. Although a large body of work has recently emerged highlighting various physical covert channels, these attacks have mostly targeted open-loop cyber-physical systems where the covert channels exist on physical channels that are not being monitored by the victim. Network architectures such as fog computing push sensitive data to cyber-physical edge devices--whose physical side channels are typically monitored via state estimation. In this paper, we formalize covert data exfiltration that uses existing cyber-physical models and infrastructure of individual devices to exfiltrate data in a stealthy manner, i.e., we propose a method to circumvent cyber-physical state estimation intrusion detection techniques while exfiltrating sensitive data from the network. We propose a generalized model for encoding and decoding sensitive data within cyber-physical control loops. We evaluate our approach on a distributed IoT network that includes computation nodes residing on physical drones as well as on an industrial control system for the control of a robotic arm. Unlike prior works, we formalize the constraints of covert cyber-physical channel exfiltration in the presence of a defender performing state estimation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.