Computer Science > Computation and Language
[Submitted on 24 Oct 2022]
Title:"Covid vaccine is against Covid but Oxford vaccine is made at Oxford!" Semantic Interpretation of Proper Noun Compounds
View PDFAbstract:Proper noun compounds, e.g., "Covid vaccine", convey information in a succinct manner (a "Covid vaccine" is a "vaccine that immunizes against the Covid disease"). These are commonly used in short-form domains, such as news headlines, but are largely ignored in information-seeking applications. To address this limitation, we release a new manually annotated dataset, ProNCI, consisting of 22.5K proper noun compounds along with their free-form semantic interpretations. ProNCI is 60 times larger than prior noun compound datasets and also includes non-compositional examples, which have not been previously explored. We experiment with various neural models for automatically generating the semantic interpretations from proper noun compounds, ranging from few-shot prompting to supervised learning, with varying degrees of knowledge about the constituent nouns. We find that adding targeted knowledge, particularly about the common noun, results in performance gains of upto 2.8%. Finally, we integrate our model generated interpretations with an existing Open IE system and observe an 7.5% increase in yield at a precision of 85%. The dataset and code are available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.