Computer Science > Information Retrieval
[Submitted on 21 Oct 2022]
Title:On-Device Model Fine-Tuning with Label Correction in Recommender Systems
View PDFAbstract:To meet the practical requirements of low latency, low cost, and good privacy in online intelligent services, more and more deep learning models are offloaded from the cloud to mobile devices. To further deal with cross-device data heterogeneity, the offloaded models normally need to be fine-tuned with each individual user's local samples before being put into real-time inference. In this work, we focus on the fundamental click-through rate (CTR) prediction task in recommender systems and study how to effectively and efficiently perform on-device fine-tuning. We first identify the bottleneck issue that each individual user's local CTR (i.e., the ratio of positive samples in the local dataset for fine-tuning) tends to deviate from the global CTR (i.e., the ratio of positive samples in all the users' mixed datasets on the cloud for training out the initial model). We further demonstrate that such a CTR drift problem makes on-device fine-tuning even harmful to item ranking. We thus propose a novel label correction method, which requires each user only to change the labels of the local samples ahead of on-device fine-tuning and can well align the locally prior CTR with the global CTR. The offline evaluation results over three datasets and five CTR prediction models as well as the online A/B testing results in Mobile Taobao demonstrate the necessity of label correction in on-device fine-tuning and also reveal the improvement over cloud-based learning without fine-tuning.
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.