Computer Science > Robotics
[Submitted on 18 Nov 2022]
Title:Rationale-aware Autonomous Driving Policy utilizing Safety Force Field implemented on CARLA Simulator
View PDFAbstract:Despite the rapid improvement of autonomous driving technology in recent years, automotive manufacturers must resolve liability issues to commercialize autonomous passenger car of SAE J3016 Level 3 or higher. To cope with the product liability law, manufacturers develop autonomous driving systems in compliance with international standards for safety such as ISO 26262 and ISO 21448. Concerning the safety of the intended functionality (SOTIF) requirement in ISO 26262, the driving policy recommends providing an explicit rational basis for maneuver decisions. In this case, mathematical models such as Safety Force Field (SFF) and Responsibility-Sensitive Safety (RSS) which have interpretability on decision, may be suitable. In this work, we implement SFF from scratch to substitute the undisclosed NVIDIA's source code and integrate it with CARLA open-source simulator. Using SFF and CARLA, we present a predictor for claimed sets of vehicles, and based on the predictor, propose an integrated driving policy that consistently operates regardless of safety conditions it encounters while passing through dynamic traffic. The policy does not have a separate plan for each condition, but using safety potential, it aims human-like driving blended in with traffic flow.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.