Statistics > Applications
[Submitted on 3 Dec 2022 (v1), last revised 1 Jun 2023 (this version, v3)]
Title:Breaking Down the Lockdown: The Causal Effects of Stay-At-Home Mandates on Uncertainty and Sentiments During the COVID-19 Pandemic
View PDFAbstract:We study the causal effects of lockdown measures on uncertainty and sentiment on Twitter. To this end, we exploit the quasi-experimental framework created by the first COVID-19 lockdown in a high-income economy--the unexpected Italian lockdown in February 2020. We measure changes in public sentiment using deep learning and dictionary-based methods on the text of daily tweets geolocated within and near the locked-down areas, before and after the treatment. We classify tweets into four categories--economics, health, politics, and lockdown policy--to examine how the policy affected emotions heterogeneously. Using a staggered difference-in-differences approach, we show that the lockdown did not have a significantly robust impact on economic uncertainty and sentiment. However, the policy came at the price of higher uncertainty on health and politics and more negative political sentiments. These results, which are robust to a battery of robustness tests, show that lockdowns have relevant non-health related implications.
Submission history
From: Falco J. Bargagli Stoffi [view email][v1] Sat, 3 Dec 2022 23:19:52 UTC (21,192 KB)
[v2] Mon, 13 Feb 2023 14:42:28 UTC (5,042 KB)
[v3] Thu, 1 Jun 2023 20:25:51 UTC (8,417 KB)
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.