Electrical Engineering and Systems Science > Systems and Control
[Submitted on 13 Dec 2022]
Title:Community Time-Activity Trajectory Modelling based on Markov Chain Simulation and Dirichlet Regression
View PDFAbstract:Accurate modeling of human time-activity trajectory is essential to support community resilience and emergency response strategies such as daily energy planning and urban seismic vulnerability assessment. However, existing modeling of time-activity trajectory is only driven by socio-demographic information with identical activity trajectories shared among the same group of people and neglects the influence of the environment. To further improve human time-activity trajectory modeling, this paper constructs community time-activity trajectory and analyzes how social-demographic and built environment influence people s activity trajectory based on Markov Chains and Dirichlet Regression. We use the New York area as a case study and gather data from American Time Use Survey, Policy Map, and the New York City Energy & Water Performance Map to evaluate the proposed method. To validate the regression model, Box s M Test and T-test are performed with 80% data training the model and the left 20% as the test sample. The modeling results align well with the actual human behavior trajectories, demonstrating the effectiveness of the proposed method. It also shows that both social-demographic and built environment factors will significantly impact a community's time-activity trajectory. Specifically, 1) Diversity and median age both have a significant influence on the proportion of time people assign to education activity. 2) Transportation condition affects people s activity trajectory in the way that longer commute time decreases the proportion of biological activity (eg. sleeping and eating) and increases people s working time. 3) Residential density affects almost all activities with a significant p-value for all biological needs, household management, working, education, and personal preference.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.