Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 15 Dec 2022 (v1), last revised 27 Mar 2023 (this version, v2)]
Title:CNN-based real-time 2D-3D deformable registration from a single X-ray projection
View PDFAbstract:Purpose: The purpose of this paper is to present a method for real-time 2D-3D non-rigid registration using a single fluoroscopic image. Such a method can find applications in surgery, interventional radiology and radiotherapy. By estimating a three-dimensional displacement field from a 2D X-ray image, anatomical structures segmented in the preoperative scan can be projected onto the 2D image, thus providing a mixed reality view. Methods: A dataset composed of displacement fields and 2D projections of the anatomy is generated from the preoperative scan. From this dataset, a neural network is trained to recover the unknown 3D displacement field from a single projection image. Results: Our method is validated on lung 4D CT data at different stages of the lung deformation. The training is performed on a 3D CT using random (non domain-specific) diffeomorphic deformations, to which perturbations mimicking the pose uncertainty are added. The model achieves a mean TRE over a series of landmarks ranging from 2.3 to 5.5 mm depending on the amplitude of deformation. Conclusion: In this paper, a CNN-based method for real-time 2D-3D non-rigid registration is presented. This method is able to cope with pose estimation uncertainties, making it applicable to actual clinical scenarios, such as lung surgery, where the C-arm pose is planned before the intervention.
Submission history
From: François Lecomte [view email][v1] Thu, 15 Dec 2022 09:57:19 UTC (17,972 KB)
[v2] Mon, 27 Mar 2023 14:22:54 UTC (17,968 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.