Computer Science > Computation and Language
[Submitted on 15 Dec 2022 (v1), last revised 26 May 2023 (this version, v2)]
Title:Visually-augmented pretrained language models for NLP tasks without images
View PDFAbstract:Although pre-trained language models~(PLMs) have shown impressive performance by text-only self-supervised training, they are found lack of visual semantics or commonsense. Existing solutions often rely on explicit images for visual knowledge augmentation (requiring time-consuming retrieval or generation), and they also conduct the augmentation for the whole input text, without considering whether it is actually needed in specific inputs or tasks. To address these issues, we propose a novel \textbf{V}isually-\textbf{A}ugmented fine-tuning approach that can be generally applied to various PLMs or NLP tasks, \textbf{W}ithout using any retrieved or generated \textbf{I}mages, namely \textbf{VAWI}. Experimental results show that our approach can consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales, and outperform several competitive baselines on ten tasks. Our codes and data are publicly available at~\url{this https URL}.
Submission history
From: Hangyu Guo [view email][v1] Thu, 15 Dec 2022 16:13:25 UTC (450 KB)
[v2] Fri, 26 May 2023 14:09:49 UTC (7,061 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.