Computer Science > Machine Learning
[Submitted on 23 Dec 2022 (v1), last revised 28 Aug 2023 (this version, v2)]
Title:Deep Unfolding-based Weighted Averaging for Federated Learning in Heterogeneous Environments
View PDFAbstract:Federated learning is a collaborative model training method that iterates model updates by multiple clients and aggregation of the updates by a central server. Device and statistical heterogeneity of participating clients cause significant performance degradation so that an appropriate aggregation weight should be assigned to each client in the aggregation phase of the server. To adjust the aggregation weights, this paper employs deep unfolding, which is known as the parameter tuning method that leverages both learning capability using training data like deep learning and domain knowledge. This enables us to directly incorporate the heterogeneity of the environment of interest into the tuning of the aggregation weights. The proposed approach can be combined with various federated learning algorithms. The results of numerical experiments indicate that a higher test accuracy for unknown class-balanced data can be obtained with the proposed method than that with conventional heuristic weighting methods. The proposed method can handle large-scale learning models with the aid of pretrained models such that it can perform practical real-world tasks. Convergence rate of federated learning algorithms with the proposed method is also provided in this paper.
Submission history
From: Ayano Nakai-Kasai [view email][v1] Fri, 23 Dec 2022 08:20:37 UTC (47 KB)
[v2] Mon, 28 Aug 2023 06:54:12 UTC (5,158 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.