Mathematics > Numerical Analysis
[Submitted on 4 Jan 2023]
Title:Numerical investigation of the sharp-interface limit of the Navier-Stokes-Cahn-Hilliard equations
View PDFAbstract:In this article, we study the behavior of the Abels-Garcke-Grün Navier-Stokes-Cahn-Hilliard diffuse-interface model for binary-fluid flows, as the diffuse-interface thickness passes to zero. We consider this so-called sharp-interface limit in the setting of the classical oscillating-droplet problem. To provide reference limit solutions, we derive new analytical expressions for small-amplitude oscillations of a viscous droplet in a viscous ambient fluid in two dimensions. We probe the sharp-interface limit of the Navier-Stokes-Cahn-Hilliard equations by means of an adaptive finite-element method, in which the refinements are guided by an a-posteriori error-estimation procedure. The adaptive-refinement procedure enables us to consider diffuse-interface thicknesses that are significantly smaller than other relevant length scales in the droplet-oscillation problem, allowing an exploration of the asymptotic regime. For two distinct modes of oscillation, we determine the optimal scaling relation between the diffuse-interface thickness parameter and the mobility parameter. Additionally, we examine the effect of deviations from the optimal scaling of the mobility parameter on the approach of the diffuse-interface solution to the sharp-interface solution.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.