Statistics > Machine Learning
[Submitted on 8 Feb 2023]
Title:Decision trees compensate for model misspecification
View PDFAbstract:The best-performing models in ML are not interpretable. If we can explain why they outperform, we may be able to replicate these mechanisms and obtain both interpretability and performance. One example are decision trees and their descendent gradient boosting machines (GBMs). These perform well in the presence of complex interactions, with tree depth governing the order of interactions. However, interactions cannot fully account for the depth of trees found in practice. We confirm 5 alternative hypotheses about the role of tree depth in performance in the absence of true interactions, and present results from experiments on a battery of datasets. Part of the success of tree models is due to their robustness to various forms of mis-specification. We present two methods for robust generalized linear models (GLMs) addressing the composite and mixed response scenarios.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.