Computer Science > Machine Learning
[Submitted on 14 Feb 2023 (v1), last revised 23 Feb 2023 (this version, v2)]
Title:simpleKT: A Simple But Tough-to-Beat Baseline for Knowledge Tracing
View PDFAbstract:Knowledge tracing (KT) is the problem of predicting students' future performance based on their historical interactions with intelligent tutoring systems. Recently, many works present lots of special methods for applying deep neural networks to KT from different perspectives like model architecture, adversarial augmentation and etc., which make the overall algorithm and system become more and more complex. Furthermore, due to the lack of standardized evaluation protocol \citep{liu2022pykt}, there is no widely agreed KT baselines and published experimental comparisons become inconsistent and self-contradictory, i.e., the reported AUC scores of DKT on ASSISTments2009 range from 0.721 to 0.821 \citep{minn2018deep,yeung2018addressing}. Therefore, in this paper, we provide a strong but simple baseline method to deal with the KT task named \textsc{simpleKT}. Inspired by the Rasch model in psychometrics, we explicitly model question-specific variations to capture the individual differences among questions covering the same set of knowledge components that are a generalization of terms of concepts or skills needed for learners to accomplish steps in a task or a problem. Furthermore, instead of using sophisticated representations to capture student forgetting behaviors, we use the ordinary dot-product attention function to extract the time-aware information embedded in the student learning interactions. Extensive experiments show that such a simple baseline is able to always rank top 3 in terms of AUC scores and achieve 57 wins, 3 ties and 16 loss against 12 DLKT baseline methods on 7 public datasets of different domains. We believe this work serves as a strong baseline for future KT research. Code is available at \url{this https URL}\footnote{We merged our model to the \textsc{pyKT} benchmark at \url{this https URL}.}.
Submission history
From: Zitao Liu [view email][v1] Tue, 14 Feb 2023 08:09:09 UTC (4,759 KB)
[v2] Thu, 23 Feb 2023 08:55:51 UTC (4,763 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.