Computer Science > Cryptography and Security
[Submitted on 28 Feb 2023]
Title:Steganography of Steganographic Networks
View PDFAbstract:Steganography is a technique for covert communication between two parties. With the rapid development of deep neural networks (DNN), more and more steganographic networks are proposed recently, which are shown to be promising to achieve good performance. Unlike the traditional handcrafted steganographic tools, a steganographic network is relatively large in size. It raises concerns on how to covertly transmit the steganographic network in public channels, which is a crucial stage in the pipeline of steganography in real world applications. To address such an issue, we propose a novel scheme for steganography of steganographic networks in this paper. Unlike the existing steganographic schemes which focus on the subtle modification of the cover data to accommodate the secrets. We propose to disguise a steganographic network (termed as the secret DNN model) into a stego DNN model which performs an ordinary machine learning task (termed as the stego task). During the model disguising, we select and tune a subset of filters in the secret DNN model to preserve its function on the secret task, where the remaining filters are reactivated according to a partial optimization strategy to disguise the whole secret DNN model into a stego DNN model. The secret DNN model can be recovered from the stego DNN model when needed. Various experiments have been conducted to demonstrate the advantage of our proposed method for covert communication of steganographic networks as well as general DNN models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.