Computer Science > Computation and Language
[Submitted on 12 Mar 2023]
Title:Compressed Heterogeneous Graph for Abstractive Multi-Document Summarization
View PDFAbstract:Multi-document summarization (MDS) aims to generate a summary for a number of related documents. We propose HGSUM, an MDS model that extends an encoder-decoder architecture, to incorporate a heterogeneous graph to represent different semantic units (e.g., words and sentences) of the documents. This contrasts with existing MDS models which do not consider different edge types of graphs and as such do not capture the diversity of relationships in the documents. To preserve only key information and relationships of the documents in the heterogeneous graph, HGSUM uses graph pooling to compress the input graph. And to guide HGSUM to learn compression, we introduce an additional objective that maximizes the similarity between the compressed graph and the graph constructed from the ground-truth summary during training. HGSUM is trained end-to-end with graph similarity and standard cross-entropy objectives. Experimental results over MULTI-NEWS, WCEP-100, and ARXIV show that HGSUM outperforms state-of-the-art MDS models. The code for our model and experiments is available at: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.