Computer Science > Artificial Intelligence
[Submitted on 16 Mar 2023]
Title:A Dual Branch Network for Emotional Reaction Intensity Estimation
View PDFAbstract:Emotional Reaction Intensity(ERI) estimation is an important task in multimodal scenarios, and has fundamental applications in medicine, safe driving and other fields. In this paper, we propose a solution to the ERI challenge of the fifth Affective Behavior Analysis in-the-wild(ABAW), a dual-branch based multi-output regression model. The spatial attention is used to better extract visual features, and the Mel-Frequency Cepstral Coefficients technology extracts acoustic features, and a method named modality dropout is added to fusion multimodal features. Our method achieves excellent results on the official validation set.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.