Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Mar 2023]
Title:Knowing the Distance: Understanding the Gap Between Synthetic and Real Data For Face Parsing
View PDFAbstract:The use of synthetic data for training computer vision algorithms has become increasingly popular due to its cost-effectiveness, scalability, and ability to provide accurate multi-modality labels. Although recent studies have demonstrated impressive results when training networks solely on synthetic data, there remains a performance gap between synthetic and real data that is commonly attributed to lack of photorealism. The aim of this study is to investigate the gap in greater detail for the face parsing task. We differentiate between three types of gaps: distribution gap, label gap, and photorealism gap. Our findings show that the distribution gap is the largest contributor to the performance gap, accounting for over 50% of the gap. By addressing this gap and accounting for the labels gap, we demonstrate that a model trained on synthetic data achieves comparable results to one trained on a similar amount of real data. This suggests that synthetic data is a viable alternative to real data, especially when real data is limited or difficult to obtain. Our study highlights the importance of content diversity in synthetic datasets and challenges the notion that the photorealism gap is the most critical factor affecting the performance of computer vision models trained on synthetic data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.