Computer Science > Information Theory
[Submitted on 29 Mar 2023]
Title:Gradient Flow Decoding for LDPC Codes
View PDFAbstract:The power consumption of the integrated circuit is becoming a significant burden, particularly for large-scale signal processing tasks requiring high throughput. The decoding process of LDPC codes is such a heavy signal processing task that demands power efficiency and higher decoding throughput. A promising approach to reducing both power and latency of a decoding process is to use an analog circuit instead of a digital circuit. This paper investigates a continuous-time gradient flow-based approach for decoding LDPC codes, which employs a potential energy function similar to the objective function used in the gradient descent bit flipping (GDBF) algorithm. We experimentally demonstrate that the decoding performance of the gradient flow decoding is comparable to that of the multi-bit mode GDBF algorithm. Since an analog circuit of the gradient flow decoding requires only analog arithmetic operations and an integrator, future advancements in programmable analog integrated circuits may make practical implementation feasible.
Submission history
From: Tadashi Wadayama [view email][v1] Wed, 29 Mar 2023 02:45:13 UTC (3,996 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.