Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Apr 2023]
Title:Tailored Multi-Organ Segmentation with Model Adaptation and Ensemble
View PDFAbstract:Multi-organ segmentation, which identifies and separates different organs in medical images, is a fundamental task in medical image analysis. Recently, the immense success of deep learning motivated its wide adoption in multi-organ segmentation tasks. However, due to expensive labor costs and expertise, the availability of multi-organ annotations is usually limited and hence poses a challenge in obtaining sufficient training data for deep learning-based methods. In this paper, we aim to address this issue by combining off-the-shelf single-organ segmentation models to develop a multi-organ segmentation model on the target dataset, which helps get rid of the dependence on annotated data for multi-organ segmentation. To this end, we propose a novel dual-stage method that consists of a Model Adaptation stage and a Model Ensemble stage. The first stage enhances the generalization of each off-the-shelf segmentation model on the target domain, while the second stage distills and integrates knowledge from multiple adapted single-organ segmentation models. Extensive experiments on four abdomen datasets demonstrate that our proposed method can effectively leverage off-the-shelf single-organ segmentation models to obtain a tailored model for multi-organ segmentation with high accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.