Computer Science > Discrete Mathematics
[Submitted on 15 Apr 2023]
Title:Computing shortest 12-representants of labeled graphs
View PDFAbstract:The notion of $12$-representable graphs was introduced as a variant of a well-known class of word-representable graphs. Recently, these graphs were shown to be equivalent to the complements of simple-triangle graphs. This indicates that a $12$-representant of a graph (i.e., a word representing the graph) can be obtained in polynomial time if it exists. However, the $12$-representant is not necessarily optimal (i.e., shortest possible). This paper proposes an $O(n^2)$-time algorithm to generate a shortest $12$-representant of a labeled graph, where $n$ is the number of vertices of the graph.
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.